Monitoring of Intra-Abdominal Pressure and Clinical Challenges in Intensive Care Unit Patients

  • P. Pelosi
  • P. Caironi
  • L. Gattinoni
Conference paper


Increased intra-abdominal pressure (IAP) may occur in a number of different situations encountered by intensivists, such as tense ascites, abdominal hemorrhage, use of military antishock trousers, abdominal obstruction, during laparoscopy, large abdominal tumors, and peritoneal dialysis [1, 2, 3, 4, 5, 6, 7]. Both clinical and experimental evidence support the hypothesis that an increase in IAP may affect cardiac, renal, respiratory, and metabolic functions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], as traditionally believed by most surgeons and intensivists. Nevertheless, increased IAP is rarely recognized and treated in intensive care unit (ICU) settings. This may be due to two different reasons: on the one hand the physiological consequences and the clinical importance of increased IAP are not well known to most physicians; on the other, the easy and precise measurement of IAP has not been well documented. Furthermore, the limits of increased IAP, above which it is necessary to intervene, are not well established.


Intensive Care Unit Patient Abdominal Compartment Syndrome Intraabdominal Pressure Bladder Pressure Lower Inflection Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richardson JD, Trinkle JK (1976) Hemodynamic and respiratory alterations with increased intra-abdominal pressure. J Surg 20:401–404Google Scholar
  2. 2.
    Lynch FP, Ochi T, Scully JM, et al (1974) Cardiovascular effects of increased intra-abdominal pressure in newborn piglets. J Pediatr Surg 9:621–626PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes GE, Laine GA, Giam PY, et al (1985) Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Physiol 248:208–213Google Scholar
  4. 4.
    Robotham JL, Wise RA, Bromberger-Barnea B (1985) Effects of changes in abdominal pressure on left ventricular performance and regional blood flow. Crit Care Med 13:803–809PubMedCrossRefGoogle Scholar
  5. 5.
    Burchard KW, Ciombor DM, McLeod MK, et al (1985) Positive end expiratory pressure with increased intra-abdominal pressure. Surg Gynecol Obstet 161:313–318PubMedGoogle Scholar
  6. 6.
    Celoria G, Steingrub J, Dawson JA, et al (1987) Oliguria from high intra-abdominal pressure secondary to ovarian mass. Crit Care Med 15:78–79PubMedCrossRefGoogle Scholar
  7. 7.
    Schurig R, Gahl GM, Becker H, et al (1979) Hemodynamic studies in long-term peritoneal dialysis patients. Trans Am Soc Artif Intern Organs 3:215–218Google Scholar
  8. 8.
    Ivankovich AD, Miletich DJ, Albrecht RF, et al (1975) Cardiovascular effects of intraperitoneal insufflation with carbon dioxide and nitrous oxide in the dog. Anesthesiology 42:281–287PubMedCrossRefGoogle Scholar
  9. 9.
    Le Roith D, Bark H, Nyska M, et al (1982) The effect of abdominal pressure on plasma antidiuretic hormone levels in the dog. J Surg 32:65–69Google Scholar
  10. 10.
    Kashtan J, Green JF, Parsons EQ, et al (1981) Hemodynamic effects of increased abdominal pressure. J Surg 30:249–255Google Scholar
  11. 11.
    Burchard KW, Slotman GJ, Jed E, et al (1985) Positive pressure respirations and pneumatic antishock garment application—hemodynamic response. J Trauma 25:83–89PubMedCrossRefGoogle Scholar
  12. 12.
    Diamant M, Benumof JL, Saidman LJ (1978) Hemodynamics of increased intra-abdominal pressure: interaction with hypovolemia and halothane anesthesia. Anesthesiology 48:23–27PubMedCrossRefGoogle Scholar
  13. 13.
    Pelosi P, Ravagnan I, Giurati G, et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91:1221–1231PubMedCrossRefGoogle Scholar
  14. 14.
    Schein M, Wittman DH, Aprahamian CC, et al (1995) The abdominal compartment syndrome: the physiological and clinical consequences of elevated intra-abdominal pressure. J Am Coll Surg 180:745–753PubMedGoogle Scholar
  15. 15.
    Sugrue M, Buist MD, Lee A, et al (1994) Intra-abdominal pressure measurement using a modified nasogastric tube: description and validation of a new technique. Intensive Care Med 20:588–590PubMedCrossRefGoogle Scholar
  16. 16.
    Schein M, Ivatury R (1998) Intra-abdominal hypertension and abdominal compartment syndrome. Br J Surg 85:1027–1028PubMedCrossRefGoogle Scholar
  17. 17.
    Ivatury RR, Diebel L, Porter JM, et al (1997) Intra-abdominal hypertension and the abdominal compartment syndrome. Surg Clin North Am 77:783–799PubMedCrossRefGoogle Scholar
  18. 18.
    Kron IL, Harman PK, Nolan SP (1984) The measurement of intra-abdominal pressure as a criterion for abdominal re-exploration. Ann Surg 199:28–30PubMedCrossRefGoogle Scholar
  19. 19.
    Sugrue M, Jones F, Janjua KJ, et al (1998) Temporary abdominal closure: a prospective evaluation of its effects on renal and respiratory physiology. J Trauma 45:914–921PubMedCrossRefGoogle Scholar
  20. 20.
    Meldrum DR, Moore FA, Moore EE, et al (1997) Prospective characterization and selective management of the abdominal compartment syndrome. Am J Surg 174:667–673PubMedCrossRefGoogle Scholar
  21. 21.
    Cheatham ML, White MW, Sagraves SG, et al (2000) Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma 49:621–626PubMedCrossRefGoogle Scholar
  22. 22.
    Iberti TJ, Kelly KM, Gentili DR, et al (1987) A simple technique to accurately determine intra-abdominal pressure. Crit Care Med 15:1140–1142PubMedCrossRefGoogle Scholar
  23. 23.
    Harman PK, Kron IL, McLachlan HD, et al (1982) Elevated intra-abdominal pressure and renal function. Ann Surg 196:594–597PubMedCrossRefGoogle Scholar
  24. 24.
    Caldwell CB, Ricotta JJ (1987) Changes in visceral blood flow with elevated intraabdominal pressure. J Surg 43:14–20Google Scholar
  25. 25.
    Kron IL, Harman PK, Nolan SP (1984) The measurement of intra-abdominal pressure as a criterion of abdominal re-exploration. Ann Surg 199:28–30PubMedCrossRefGoogle Scholar
  26. 26.
    Johna S, Taylor E, Brown C, et al (1999) Abdominal compartment syndrome: does intra-cystic pressure reflect actual intra-abdominal pressure? A prospective study in surgical patients. Crit Care 3:135–138PubMedCrossRefGoogle Scholar
  27. 27.
    Fusco MA, Martin RS, Chang MC (2001) Estimation of intra-abdominal pressure by bladder pressure measurement: validity and methodology. J Trauma 50:297–302PubMedCrossRefGoogle Scholar
  28. 28.
    Lacey SR, Bruce J, Brooks SP, et al (2000) The relative merits of various methods of indirect measurement of intraabdominal pressure as a guide to closure of abdominal wall defects. J Pediatr Surg 22:1207–1211CrossRefGoogle Scholar
  29. 29.
    Collee GG, Lomax DM, Ferguson C, et al (1993) Bedside measurement of intra-abdominal pressure (IAP) via an indwelling naso-gastric tube: clinical validation of the technique. Intensive Care Med 19: 478–480PubMedCrossRefGoogle Scholar
  30. 30.
    Shenasky JH, Gillenwater JY (1972) The renal hemodynamic and functional effects of external counterpressure. Surg Gynecol Obstet 134:253–258PubMedGoogle Scholar
  31. 31.
    Cullen DJ, Coyle JP, Teplich R, et al (1989) Cardiovascular, pulmonary, and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med 17:118–121PubMedCrossRefGoogle Scholar
  32. 32.
    Iberti TJ, Lieber CE, Benjamin E (1989) Determination of intra-abdominal pressure using a transuretheral bladder catheter: clinical validation of the technique. Anesthesiology 70:47–50PubMedCrossRefGoogle Scholar
  33. 33.
    Fietsam R, Villalba M, Glover JL, et al (1989) Intra-abdominal compartment syndrome as a complication of ruptured abdominal aortic aneurysm repair. Am Surg 56:396–402Google Scholar
  34. 34.
    Luecke T, Hezzman P, Caironi P, et al (2001) Oleic acid and intra-abdominal pressure effects on lung morphology in an experimental animal model. Proceedings 9th ESA Annual Meeting.Google Scholar
  35. 35.
    Pelosi P, Foti G, Cereda M, et al (1996) Effects of carbon dioxide insufflation for laparoscopic cholecystectomy on the respiratory system. Anaesthesia 51:744–749PubMedGoogle Scholar
  36. 36.
    Gattinoni L, Pelosi P, Suter PM, et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care 158:3–11Google Scholar
  37. 37.
    Ranieri VM, Brienza N, Santostasi S, et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distention. Am J Respir Crit Care 156:1082–1091Google Scholar
  38. 38.
    Malbrain MLNG (1999) Abdominal pressure in the critically ill: measurement and clinical relevance. Intensive Care Med 25:1453–1458PubMedCrossRefGoogle Scholar
  39. 39.
    Pelosi P, Croci M, Ravagnan I, et al (1996) Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 109:144–151PubMedCrossRefGoogle Scholar
  40. 40.
    Amato MBP, Barbas CSV, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  41. 41.
    Kaklamanos IG, Condos S, Merrell RC (2000) Time-related changes in hemodynamic parameters and pressure-derived indices of left ventricular function in a porcine model of prolonged pneumoperitoneum. Surg Endosc 14:834–838PubMedCrossRefGoogle Scholar
  42. 42.
    Bendahan J, Coetzee CJ, Papagianopoulos C et, al (1995) Abdominal compartment syndrome. J Trauma 38:152–153PubMedCrossRefGoogle Scholar
  43. 43.
    Watson RA, Howdieshell TR (1998) Abdominal compartment syndrome. South Med J 91:326–332PubMedCrossRefGoogle Scholar
  44. 44.
    Stone HH, Fulenwider TJ (1977) Renal decapsulation in the prevention of post-ischemic oliguria. Ann Surg 35:11–18Google Scholar
  45. 45.
    Altintas F, Tunali Y, Bozkurt P, et al (2001) An experimental study on the relationship of intra-abdominal pressure and renal ischemia. Middle East J Anesthesiol 16:55–56PubMedGoogle Scholar
  46. 46.
    Richards WO, Scovill W, Shin B, et al (1983) Acute renal failure associated with increased intra-abdominal pressure. Ann Surg 197:183–187PubMedCrossRefGoogle Scholar
  47. 47.
    Diebel LN, Myers T, Dulchavsky S (1997) Effects of increasing airway pressure and PEEP on the assessment of cardiac preload. J Trauma 42:585–591PubMedCrossRefGoogle Scholar
  48. 48.
    Diebel LN, Dulchavsky SA, Brown WJ (1997) Splanchnic ischemia and bacterial translocation in the abdominal compartment syndrome. J Trauma 43:852–855PubMedCrossRefGoogle Scholar
  49. 49.
    Gargiulo NJ3, Simon RJ, Leon W, et al (1998) Hemorrhage exacerbates bacterial translocation at low levels of intra-abdominal pressure. Arch Surg 133:1351–1355PubMedCrossRefGoogle Scholar
  50. 50.
    Sherck J, Sciver A, Shatney C, et al (1998) Covering the “open abdomen”: a better technique. Am Surg 64:854–857PubMedGoogle Scholar
  51. 51.
    Brock WB, Barker DE, Burns RP (1995) Temporary closure of open abdominal wounds: the vacuum pack. Am Surg 61:30–35PubMedGoogle Scholar
  52. 52.
    Bloomfield GL, Ridings PC, Blocher CR, et al (1996) Effects of increased intra-abdominal pressure upon intracranial and cerebral perfusion pressure before and after volume expansion. J Trauma 40:936–943PubMedCrossRefGoogle Scholar
  53. 53.
    Bloomfield GL, Blocher CR, Fakhry IF, et al (1997) Elevated intra-abdominal pressure increased plasma renin activity and aldosterone levels. J Trauma 42:997–1004PubMedCrossRefGoogle Scholar
  54. 54.
    Luce JM, Huseby JS, Kirk W, et al (1982) Mechanism by which positive end-expiratory pressure increases cerebrospinal fluid pressure in dogs. J Appl Physiol 52:231–235PubMedGoogle Scholar
  55. 55.
    Josephs LG, Este-McDonald JR, Birkett DH, et al (1994) Diagnostic laparoscopy increases intracranial pressure. J Trauma 36:815–819PubMedCrossRefGoogle Scholar
  56. 56.
    Burchiel KJ, Steege TD, Wyler AR (1981) Intracranial pressure changes in brain-injured patients requiring positive end-expiratory pressure ventilation. Neurosurgery 8:443–449PubMedCrossRefGoogle Scholar
  57. 57.
    Pelosi P, Colombo G, Gamberoni C, et al (2000) Effects of positive end-expiratory pressure on respiratory function in head injured patients. Intensive Care Med 26:S329CrossRefGoogle Scholar
  58. 58.
    Citerio G, Vascotto E, Villa F, et al (2001) Induced abdominal compartment syndrome increases intracranial pressure in neurotrauma patients: a prospective study. Crit Care Med 29:1466–1471PubMedCrossRefGoogle Scholar
  59. 59.
    Pelosi P, Malacrida R, Oggioni M, et al (2001) Intra-abdominal pressure in critically ill patients: a prospective, observational, multicentre study. Proceedings 9th ESA Annual Meeting.Google Scholar
  60. 60.
    Knaus WA, Wagner DP, Draper EA, et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636PubMedCrossRefGoogle Scholar
  61. 61.
    Bone RC, Fisher CJ, Clemmer TP, et al (1987) A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658PubMedCrossRefGoogle Scholar
  62. 62.
    Vincent JL, Moreno R, Takala J, et al (1996) The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • P. Pelosi
    • 1
  • P. Caironi
    • 2
  • L. Gattinoni
    • 2
  1. 1.Department of Anaesthesiology and Intensive CareInsubria UniversityVareseItaly
  2. 2.Department of Anaesthesia and Intensive CareMilan University Maggiore HospitalMilanItaly

Personalised recommendations