Clinical Presentation and Mechanisms of Immune-Mediated Cerebellar Ataxia

  • J. Honnorat
Part of the Topics in Neuroscience book series (TOPNEURO)


The brain has traditionally been regarded as immunologically privileged because of the existence of the blood-brain barrier, the absence of conventional lymphatic drainage and the unusual tolerance of the brain to transplanted tissue. However, over the last decades, clinical evidence has accumulated indicating that the immune system may play an important role in some central nervous system diseases usually regarded as degenerative. The best-known example is paraneo-plastic cerebellar ataxia (PCA), which is thought to involve autoimmune cross-reaction between tumour and nervous system antigens. In the past 15 years, several antibodies directed against neuronal and tumoral antigens have been described in association with PCA, leading to the definition of different subtypes of PCA based on their associated antibodies, the clinical evolution and the type of tumour. Circulating antibodies have also been described in patients with non-paraneoplastic cerebellar ataxia (N-PCA), suggesting that the immune system may be involved in certain cases of sporadic cerebellar ataxia. In this review, the clinical presentation of the different subtypes of potentially immune-mediated PCA and N-PCA will be described, and the experimental approaches that have been developed in order to understand the pathogenic role of the immune system in these ataxias will be discussed.


Purkinje Cell Cerebellar Ataxia Cerebellar Degeneration Paraneoplastic Cerebellar Degeneration Antineuronal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Posner JB, Furneaux HM (1990) Paraneoplastic syndromes. In: Waksman BH (ed) Immunologic mechanisms in neurologic and psychiatric diseases. Raven Press, New York, pp 187–219Google Scholar
  2. 2.
    Brouwer B (1919) Beitrag zur Kenntnis der chronischen diffusen Kleinhirnerkrankungen. Neurol Centralbl 38:674–682Google Scholar
  3. 3.
    Brain WR, Daniel PM, Greenfield JG (1951) Subacute cortical cerebellar degeneration and its relation to carcinoma. J Neurol Neurosurg Psychiatry 14:59–75PubMedCrossRefGoogle Scholar
  4. 4.
    Henson RA, Urich H (1982) Paraneoplastic disorders. In: Henson RA, Urich H, (ed) Cancer and the nervous system. Blackwell Scientific Publication, Oxford, pp 311–621Google Scholar
  5. 5.
    Anderson NE, Cunningham JM, Posner JB (1987) Autoimmune pathogenesis of para-neoplastic neurological syndromes. CRC Crit Rev Neurobiol 3:245–299Google Scholar
  6. 6.
    Verschnüren J, Chuang L, Rosenblum MK et al (1996) Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo associated paraneoplastic cerebellar degeneration. Acta Neuropathol 91:519–525CrossRefGoogle Scholar
  7. 7.
    Russell DS (1961) Encephalomyelitis and carcinomatous neuropathy. In: Van Bogaert L, Radermecker J, Hozay J, Lowenthal A (eds) The encephalitides. Elsevier, Amsterdam, pp 131–135Google Scholar
  8. 8.
    Trotter JL, Hendin BA, Osterland CK (1976) Cerebellar degeneration with Hodgkin disease. Arch Neurol 33:660–661PubMedCrossRefGoogle Scholar
  9. 9.
    Dalmau JO, Posner JB (1999) Paraneoplastic syndromes. Arch Neurol 56:405–408PubMedCrossRefGoogle Scholar
  10. 10.
    Keime-Guibert F, Graus F, Fleury A et al (2000) Treatment of paraneoplastic neurological syndromes with anti-neuronal antibodies (anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide and methylprednisolone. J Neurol Neurosurg Psychiatry 68:479–482PubMedCrossRefGoogle Scholar
  11. 11.
    Greenlee JE, Brashear HR (1983) Antibodies to cerebellar Purkinje cells in patients with paraneoplastic cerebellar degeneration and ovarian carcinoma. Ann Neurol 14:609–613PubMedCrossRefGoogle Scholar
  12. 12.
    Jaeckle KA, Graus F, Houghton A et al (1985) Autoimmune response of patients with paraneoplastic degeneration to a Purkinje cell cytoplasmic protein antigen. Ann Neurol 18:592–600PubMedCrossRefGoogle Scholar
  13. 13.
    Peterson K, Rosenblum MK, Kotanides H, Posner JB (1992) Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. Neurology 42:1931–1937PubMedCrossRefGoogle Scholar
  14. 14.
    Rojas I, Graus F, Keime-Guibert F et al (2000) Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology 55:713–715PubMedCrossRefGoogle Scholar
  15. 15.
    Felician O, Renard JL, Vega F et al (1995) Paraneoplastic cerebellar degeneration with anti-Yo antibody in man. Neurology 45:1226–1227PubMedCrossRefGoogle Scholar
  16. 16.
    Krakauer J, Balmaceda C, Gluck JT et al (1996) Anti-Yo-associated paraneoplastic cerebellar degeneration in a man with adenocarcinoma of unknown origin. Neurology 46:1486–1487PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson NE, Rosenblum MK, Posner JB (1988) Paraneoplastic cerebellar degeneration: clinical-immunological correlation. Ann Neurol 24:559–567PubMedCrossRefGoogle Scholar
  18. 18.
    Furneaux HM, Reich L, Posner JB (1990) Autoantibody synthesis in the central nervous system of patients with paraneoplastic syndromes. Neurology 40:1085–1091PubMedCrossRefGoogle Scholar
  19. 19.
    Giometto B, Marchiori GC, Nicolao P et al (1997) Subacute cerebellar degeneration with anti-Yo autoantibodies: immunohistochemical analysis of the immune reaction in the central nervous system. Neuropathol Appl Neurobiol 23:468–474PubMedCrossRefGoogle Scholar
  20. 20.
    Chen YT, Rettig WJ, Yenamandra AK et al (1990) Cerebellar degeneration related (CDR) antigen: a highly conserved neuroectodermal marker mapped to chromosomes X in human mouse. Proc Natl Acad Sci 87:3077–3081PubMedCrossRefGoogle Scholar
  21. 21.
    Fatallah-Shaykh H, Wolf S, Wong E et al (1991) Cloning of a leucine-zipper protein recognized by the sera of patients with antibody-associated paraneoplastic cerebellar degeneration. Proc Natl Acad Sci USA 88:3451–3454CrossRefGoogle Scholar
  22. 22.
    Sakai K, Mitchell DJ, Tsukamoto T, Steinman L (1990) Isolation of a complementary DNA clone encoding an autoantigen recognized by an anti-neuronal cell antibody from a patient with paraneoplastic cerebellar degeneration. Ann Neurol 28:692–698PubMedCrossRefGoogle Scholar
  23. 23.
    Darnell JC, Albert ML, Darnell RB (2000) Cdr2, a target antigen of naturally occurring human tumor immunity, is widely expressed in gynecological tumors. Cancer Res 60:2136–2139PubMedGoogle Scholar
  24. 24.
    Okano HJ, Park WY, Corradi JP, Darnell RB (1999) The cytoplasmic Purkinje onconeural antigen cdr2 down-regulates c-Myc function: implications for neuronal and tumor cell survival. Genes Dev 16:2087–2097CrossRefGoogle Scholar
  25. 25.
    Sakai K, Ogasawara T, Hirose G et al (1993) Analysis of autoantibody binding to 52-kd paraneoplastic cerebellar degeneration-associated antigen expressed in recombinant proteins. Ann Neurol 33:373–380PubMedCrossRefGoogle Scholar
  26. 26.
    Borges LF, Elliot PJ, Gill R et al (1985) Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science 228:346–348PubMedCrossRefGoogle Scholar
  27. 27.
    Fabian RH, Petroff G (1987) Intraneuronal IgG in the central nervous system: uptake by retrograde axonal transport. Neurology 37:1780–1784PubMedCrossRefGoogle Scholar
  28. 28.
    Graus F, Ilia I, Agusti M, Ribalta T et al (1991) Effect of intraventricular injection of anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J Neurol Sci 106:82–87PubMedCrossRefGoogle Scholar
  29. 29.
    Jaeckle KA, Stroop WG (1986) Intraventricular injection of paraneoplastic anti-Purkinje cell antibody in a rat model. Neurology 36 (Suppl 1):332Google Scholar
  30. 30.
    Greenlee JE, Burns JB, Rose JW et al (1995) Uptake of systematically administered human anti-cerebellar antibody by rat Purkinje cells following blood brain barrier disruption. Acta Neuropathol 89:341–345PubMedCrossRefGoogle Scholar
  31. 31.
    Sakai K, Gofuku M, Kitagawa Y et al (1995) Induction of anti-Purkinje cell antibodies in vivo by immunizing with a recombinant 52 kDa paraneoplastic cerebellar degeneration associated protein. J Neuroimmunol 60:135–141PubMedCrossRefGoogle Scholar
  32. 32.
    Tanaka M, Tanaka K, Onoreda O, Tsuji S (1995) Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody: 1. Mouse strains bearing different MHC molecules produce antibodies on immunization with recombinant Yo protein, but do not cause Purkinje cell loss. Clin Neurol Neurosurg 97:95–100PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka K, Tanaka M, Igarashi S et al (1995) Trial to estabUsh an animal model of para-neoplastic cerebellar degeneration with anti-Yo antibody: 2. Passive transfer of murine mononuclear cells activated with recombinant Yo protein to paraneoplastic cerebellar degeneration lymphocytes in severe combined immunodeficiency mice. Clin Neurol Neurosurg 97:101–105PubMedCrossRefGoogle Scholar
  34. 34.
    Albert ML, Darnell JC, Bender A et al (1998) Tumor-specific killer cells in paraneo-plastic cerebellar degeneration. Nature Med 11:1321–1324Google Scholar
  35. 35.
    Albert ML, Austin L, Darnell RB (2000) Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol 47:9–17PubMedCrossRefGoogle Scholar
  36. 36.
    Voltz RD, Posner JB, Dalmau J, Graus F (1997) Paraneoplastic encephalomyelitis: an update of the effects of the anti-Hu immune response on the nervous system and tumour. J Neurol Neurosurg Psychiatry 63:133–136PubMedCrossRefGoogle Scholar
  37. 37.
    Graus F, Cordon-Cardo C, Posner JB (1985) Neuronal antinuclear antibody in sensory neuronopathy from lung cancer. Neurology 35:538–543PubMedCrossRefGoogle Scholar
  38. 38.
    Dalmau J, Graus F, Rosenblum MK, Posner JB (1992) Anti-Hu associated paraneoplastic encephalomyelitis/sensory neuropathy. Medicine 71:59–72PubMedCrossRefGoogle Scholar
  39. 39.
    Mason WP, Graus F, Lang B et al (1997). Paraneoplastic cerebellar degeneration and small cell lung cancer. Brain 120:1279–1300PubMedCrossRefGoogle Scholar
  40. 40.
    Dalmau J, Furneaux HM, Rosenblum MK et al (1991) Detection of the anti-Hu anti-body in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis and sensory neuropathy. Neurology 41:1757–1764PubMedCrossRefGoogle Scholar
  41. 41.
    Greenlee JE, Parks TN, Jaeckle KA (1993) Type IIa (anti-Hu) antineuronal antibodies produce destruction of rat cerebellar granule neurons in vitro. Neurology 43:2049–2054PubMedCrossRefGoogle Scholar
  42. 42.
    Hormigo A, Lieberman F (1994) Nuclear localization of anti-Hu antibody is not associated with in vitro cytotoxicity. J Neuroimmunol 55:205–212PubMedCrossRefGoogle Scholar
  43. 43.
    Sillevis Smitt PAE, Manley GT, Posner JB (1995) Immunization with the paraneoplastic encephalomyelitis antigen HuD does not cause neurologic disease in mice. Neurology 45:1873–1878PubMedCrossRefGoogle Scholar
  44. 44.
    Panegyres PK, Reading MC, Esiri MM (1993) The inflammatory reaction of paraneoplastic ganglionitis and encephalitis: an immunohistochemical study. J Neurol 240:93–97PubMedCrossRefGoogle Scholar
  45. 45.
    Jean WC, Dalmau J, Ho A, Posner JB (1994) Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu associated paraneoplastic encephalomyelitis. Neurology 44:140–147PubMedCrossRefGoogle Scholar
  46. 46.
    Szabo A, Dalmau J, Mauley G et al (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to ELAV and sex-lethal. Cell 67:325–333PubMedCrossRefGoogle Scholar
  47. 47.
    Dropcho EJ, King PH (1994) Autoantibodies against the Hel-Nl RNA-binding protein among patients with lung carcinoma: an association with type I anti-neuronal nuclear antibodies. Ann Neurol 36:200–205PubMedCrossRefGoogle Scholar
  48. 48.
    Sakai K, Gofuku M, Kitagawa Y et al (1994) A hippocampal protein associated with paraneoplastic neurologic syndrome and small cell lung carcinoma. Biochem Biophys Res Commun 199:1200–1208PubMedCrossRefGoogle Scholar
  49. 49.
    Marusich M, Furneaux H, Henion P, Weston J (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. J Neurobiol 25:143–155PubMedCrossRefGoogle Scholar
  50. 50.
    Akamatsu W, Okano HJ, Osumi N et al (1999) Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci 96:9885–9890PubMedCrossRefGoogle Scholar
  51. 51.
    Carpentier AF, Rosenfeld MR, Delattre JY et al (1998) DNA vaccination with HuD inhibits growth of a neuroblastoma in mice. Clin Cancer Res 4:2819–2824PubMedGoogle Scholar
  52. 52.
    Voltz RD, Dalmau J, Posner JB, Rosenfeld MR (1998) T-cell receptor analysis in anti-Hu associated paraneoplastic encephalomyelitis. Neurology 51:1146–1150PubMedCrossRefGoogle Scholar
  53. 53.
    Benyahia B, Liblau R, Merle-Béral H et al (1999) Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann Neurol 45:162–167PubMedCrossRefGoogle Scholar
  54. 54.
    Tanaka K, Tanaka M, Inuzuka T et al (1999) Cytotoxic T lymphocyte-mediated cell death in paraneoplastic sensory neuropathy with anti-Hu antibody. J Neurol Sci 163:159–162PubMedCrossRefGoogle Scholar
  55. 55.
    Antoine JC, Honnorat J, Koenig F et al (1993) Posterior uveitis and paraneoplastic encephalomyelitis with auto-antibodies reacting against cytoplasmic proteins of brain and retina. J Neurol Sci 117:215–223PubMedCrossRefGoogle Scholar
  56. 56.
    Honnorat J, Antoine JC, Derrington E et al (1996) Antibodies to a subpopulation of glial cells and a 66 kD developmental protein in patients with paraneoplastic neurological syndromes. J Neurol Neurosurg Psychiatry 61:270–278PubMedCrossRefGoogle Scholar
  57. 57.
    Honnorat J, Aguera M, Zalc B et al (1998) POP66, a paraneoplastic encephalomyelitis related antigen is a marker of aduh oligodendrocytes. J Neuropathol Exp Neurol 57:311–322PubMedCrossRefGoogle Scholar
  58. 58.
    Rogemond V, Honnorat J (2000) Anti-CV2 autoantibodies and paraneoplastic neurological syndromes. Clin Rev Allergol Immunol 19:48–57Google Scholar
  59. 59.
    De la Sayette V, Bertran F, Honnorat J et al (1998) Paraneoplastic cerebellar syndrome and optic neuritis with anti-CV2 antibodies: clinical response to excision of the primary tumor. Arch Neurol 55:405–408PubMedCrossRefGoogle Scholar
  60. 60.
    Honnorat J, Byk T, Küsters I et al (1999) Ulip/CRMP proteins are recognized by autoan-tibodies in paraneoplastic neurological syndromes. Eur J Neurosci 11:4226–4232PubMedCrossRefGoogle Scholar
  61. 61.
    Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16:6197–207PubMedGoogle Scholar
  62. 62.
    Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–14PubMedCrossRefGoogle Scholar
  63. 63.
    Honnorat J, Guillon B, De Ferron E et al (1997) Association of anti-neural autoanti-bodies in a patient with paraneoplastic cerebellar syndrome and small cell lung carcinoma. J Neurol Neurosurg Psy 62:425–426CrossRefGoogle Scholar
  64. 64.
    Antoine JC, Honnorat J, Camdessanche JP et al (2001) Paraneoplastic anti-CV2 anti-bodies react with peripheral nerve and are associated with a peripheral neuropathy different from that of anti-Hu syndromes. Ann Neurol 49:214–221PubMedCrossRefGoogle Scholar
  65. 65.
    Telander RL, Smithson WA, Groover RV (1989) Clinical outcome in children with acute cerebellar encephalopathy and neuroblastoma. J Pediatr Surg 24:11–14PubMedCrossRefGoogle Scholar
  66. 66.
    Anderson NE, Budde-Steffen C, Rosenblum MC et al (1988) Opsoclonus, myoclonus, ataxia and encephalopathy in adults with cancer: a distinct paraneoplastic syndrome. Medicine (Baltimore) 67:100–109Google Scholar
  67. 67.
    Hersh B, Dalmau J, Dangond F et al (1994) Paraneoplastic opsoclonus-myoclonus associated with anti-Hu antibody. Neurology 44:1754–1755PubMedCrossRefGoogle Scholar
  68. 68.
    Cher LM, Hochberg FH, Teruya J et al (1995) Therapy for paraneoplastic neurological syndromes in six patients with protein A column immunoadsorption. Cancer 75:1678–1683PubMedCrossRefGoogle Scholar
  69. 69.
    Honnorat J, Trillet M, Antoine JC et al (1997) Paraneoplastic opsomyoclonus, cerebellar ataxia and encephalopathy associated with anti-Purkinje cell antibodies. J Neurol 244:333–339PubMedCrossRefGoogle Scholar
  70. 70.
    Luque FA, Furneaux HM, Ferziger R et al (1991) Anti-Ri: an autoantibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol 29:241–251PubMedCrossRefGoogle Scholar
  71. 71.
    Hormigo A, Dalmau J, Rosenblum MK et al (1994) Immunological and pathological study of anti-Ri associated encephalopathy. Ann Neurol 36:896–902PubMedCrossRefGoogle Scholar
  72. 72.
    Buckanovich ARJ, Yang YYL, Darnell RB (1993) The onconeural antigen Nova-1 is a neuron RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11:657–672PubMedCrossRefGoogle Scholar
  73. 73.
    Yang YL, Lin Yin G, Darnell RB (1998) The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc Nad Acad Sci USA 95:13254–13259CrossRefGoogle Scholar
  74. 74.
    Jensen KB, Dredge BK, Stefani G et al (2000) Nova-1 regulates neuron-specific alter-native splicing and is essential for neuronal viability. Neuron 25:359–371PubMedCrossRefGoogle Scholar
  75. 75.
    Polyrides AD, Okano HJ, Yang YY et al (2000) A brain-enriched polyrimidine tract-binding protein antagonizes the ability of NOVA to regulate neuron-specific alternative splicing. Proc Natl Acad Sci USA 97:6350–6355CrossRefGoogle Scholar
  76. 76.
    Buckanovich ARJ, Posner JB, Darnell RB (1996) Nova, the paraneoplastic Ri antigen is homogous to an RNA-binding protein, the activity of which is inhibited by paraneoplastic antibodies. J Neurosci 16:1114–1122PubMedGoogle Scholar
  77. 77.
    Buckanovich RJ, Darnell RB (1997) The neuronal RNA binding protein NOVA 1 recognizes specific RNA targets in vitro and in vivo. Mol Cell Biol 17:3194–3201PubMedGoogle Scholar
  78. 78.
    Ryan SG, Buckwalter MS, Lynch JW et al (1994) A missense mutation in the gene encoding the alpha 1 subunit of the inhibitory glycine receptor in the spasmodic mouse. Nat Genet 7:131–135PubMedCrossRefGoogle Scholar
  79. 79.
    Saul B, Schmieden V, Kling C et al (1994) Point mutation of glycine receptor alpha 1 subunit in the spasmodic mouse affects agonist responses. FEBS Lett 350:71–76PubMedCrossRefGoogle Scholar
  80. 80.
    Malamud N (1957) Atlas of neuropathology. University of California Press, Berkeley, pp 118Google Scholar
  81. 81.
    Hammack J, Kotanides H, Rosenblum MK, Posner JB (1992) Paraneoplastic cerebellar degeneration. II. Clinical and immunologic findings in 21 patients with Hodgkin’s disease. Neurology 42:1938–1943PubMedCrossRefGoogle Scholar
  82. 82.
    Sillevis-Smitt P, Kinoshita A, De Leeuw B et al (2000) Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 342:21–27PubMedCrossRefGoogle Scholar
  83. 83.
    Graus F, Dalmau J, Valldeoriola F et al (1997) Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol 74:55–61PubMedCrossRefGoogle Scholar
  84. 84.
    Graus F, Gultekin SH, Ferrer I et al (1998) Localization of the neuronal antigen recognized by anti-Tr antibodies from patients with paraneoplastic cerebellar degeneration and Hodgkin’s disease in the rat nervous system. Acta Neuropathol 96:1–7PubMedCrossRefGoogle Scholar
  85. 85.
    Motomura M, Lang B, Johnston I et al (1997) Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. J Neurol Sci 147:35–42PubMedCrossRefGoogle Scholar
  86. 86.
    Lennon VA, Kryzer TJ, Griesmann GE et al (1995) Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 332:1467–1474PubMedCrossRefGoogle Scholar
  87. 87.
    Clouston PD, Saper CB, Arbizu T et al (1992) Paraneoplastic cerebellar degeneration. III. Cerebellar degeneration, cancer, and the Lambert-Eaton myasthenic syndrome. Neurology 42:1944–1950PubMedCrossRefGoogle Scholar
  88. 88.
    Greenberg DA (1997) Calcium channels in neurological disease. Ann Neurol 42:275–282PubMedCrossRefGoogle Scholar
  89. 89.
    Restituito S, Thompson RM, Eliet J et al (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20:6394–6403PubMedGoogle Scholar
  90. 90.
    Pinto A, Gillard S, Moss F et al (1998) Human autoantibodies specific for the alpha 1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons. Proc Natl Acad Sci 95:8328–8333PubMedCrossRefGoogle Scholar
  91. 91.
    Antoine JC, Absi L, Honnorat J et al (1999) Anti-amphiphysin antibodies are associated with various paraneoplastic neurological syndromes and tumours. Arch Neurol 56:172–177PubMedCrossRefGoogle Scholar
  92. 92.
    Dalmau JO, Gultekin SH, Voltz R et al (1999) Mal, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain 122:27–39PubMedCrossRefGoogle Scholar
  93. 93.
    Darnell RB, Furneaux HM, Posner JB (1991) Antiserum from a patient with cerebellar degeneration identifies a novel protein in Purkinje cells, cortical neurons, and neuroectodermal tumors. J Neurosci 11:1224–1230PubMedGoogle Scholar
  94. 94.
    Tanaka K, Yamazaki M, Sata S et al (1986) Antibodies to brain proteins in paraneo-plastic cerebellar degeneration. Neurology 36:1169–1172PubMedCrossRefGoogle Scholar
  95. 95.
    Yoon JW, Yoon CS, Lim HW et al (1999) Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284:1183–1187PubMedCrossRefGoogle Scholar
  96. 96.
    Baekkeskov S, Aanstoot HJ, Christgau S et al (1990) Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151–156PubMedCrossRefGoogle Scholar
  97. 97.
    Solimena M, Folli F, Aparisi R et al (1990) Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 322:1555–1560PubMedCrossRefGoogle Scholar
  98. 98.
    Grimaldi LM, Martino G, Braghi S et al (1993) Heterogeneity of autoantibodies in stiff-man syndrome. Ann Neurol 34:57–64PubMedCrossRefGoogle Scholar
  99. 99.
    Solimena M, De Camilli P (1991) Autoimmunity to glutamic acid decarboxylase (GAD) in stiff-man syndrome and insulin-dependent diabetes mellitus. Trends Neurosci 14:452–457PubMedCrossRefGoogle Scholar
  100. 100.
    Honnorat J, Trouillas P, Thivolet C et al (1995) Autoantibodies to glutamate decar-boxylase in a patient with cerebellar cortical atrophy, peripheral neuropathy, and slow eye movements. Arch Neurol 52:462–468PubMedCrossRefGoogle Scholar
  101. 101.
    Giometto B, Miotto D, Faresin F et al (1996) Anti-GABAergic neuron autoantibodies in a patient with stiff-man syndrome and ataxia. J Neurol Sci 143:57–59PubMedCrossRefGoogle Scholar
  102. 102.
    Saiz A, Arpa J, Sagasta A et al (1997) Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 49:1026–1030PubMedCrossRefGoogle Scholar
  103. 103.
    Abele M, Weller M, Mescheriakov S et al (1999) Cerebellar ataxia with glutamic acid decarboxylase autoantibodies. Neurology 52:857–859PubMedCrossRefGoogle Scholar
  104. 104.
    Honnorat J, Saiz A, Giometto B et al (2001) Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of a series of 14 patients. Arch Neurol 58:225–230PubMedCrossRefGoogle Scholar
  105. 105.
    Ishida K, Mitoma H, Song SY et al (1999) Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann Neurol 46:263–267PubMedCrossRefGoogle Scholar
  106. 106.
    Brashear HR, Login IS, Mathe SA, Phillips LH (1997) Cerebellar disorder in stiff-man syndrome [abstract]. Neurology 48:A433CrossRefGoogle Scholar
  107. 107.
    Dinkel K, Meinck HM, Jury KM et al (1998) Inhibition of y-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol 44:194–201PubMedCrossRefGoogle Scholar
  108. 108.
    Hadjivassiliou M, Grünewald RA, Chattopadhyay AK et al (1998) Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet 352:1582-1585PubMedCrossRefGoogle Scholar
  109. 109.
    Pellecchia MT, Scala R, Filla A et al (1999) Idiopathic cerebellar ataxia associated with celiac disease: lack of distinctive neurological features. J Neurol Neurosurg Psychiatry 66:32–35PubMedCrossRefGoogle Scholar
  110. 110.
    Gahring LC, Rogers SW, Twyman RE (1997) Autoantibodies to glutamate receptor subunit GluR2 in non familial olivopontocerebellar degeneration. Neurology 48:494–500PubMedCrossRefGoogle Scholar
  111. 111.
    Ito H, Sayama S, Irie S et al (1994) Antineuronal antibodies in acute cerebellar ataxia following Epstein-Barr virus infection. Neurology 44:1506–1507PubMedCrossRefGoogle Scholar
  112. 112.
    Fritzler MJ, Kerfoot SM, Feasby TE et al (2000) Autoantibodies from patients with idiopathic ataxia bind to M-phase phosphoprotein-1 (MPP1). J Invest Med 48:28–39Google Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • J. Honnorat
    • 1
  1. 1.Neurologie BHôpital NeurologiqueLyon Cedex 03France

Personalised recommendations