New Antibodies to Neuronal and Muscle Antigens

  • A. Vincent
  • C. Buckley
  • P. Dalton
  • L. Clover
  • R. Liguori
  • P. Montagna
  • J. McConville
  • W. Hoch
Part of the Topics in Neuroscience book series (TOPNEURO)


The role of antibodies to ion channels at the neuromuscular junction is now well established. Antibodies binding to the muscle isoform of the acetylcholine receptor (AChR) are present in the majority of patients with myasthenia gravis (MG; see Chaps. 2,4), and antibodies binding to the voltage-gated calcium channel in the Lambert-Eaton myasthenic syndrome (LEMS; see Chap. 3). However, the recognition of the role these antibodies play in the pathogenesis of the disorders, and their usefulness for their diagnosis, stimulated the search for other antibody-mediated diseases of the peripheral nervous system, and also raised questions concerning their possible involvement in central nervous system (CNS) diseases (see the Introduction to this volume).


Cerebellar Ataxia Maternal Antibody TE671 Cell Limbic Encephalitis AChR Cluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanders DB, Andrews I, Howard JF, Massey JM (1997) Seronegative myastheni a gravis. Neurology 48:S40–S45CrossRefGoogle Scholar
  2. 2.
    Mossman S, Vincent A, Newsom-Davis J (1986) Myasthenia gravis without acetyl-choline-receptor antibody: a distinct disease entity. Lancet 1:116–119PubMedCrossRefGoogle Scholar
  3. 3.
    Blaes F, Beeson D, Plested P et al (2000) IgG from “seronegative” myasthenia gravis patients binds to a muscle cell line, TE671, but not to human acetylcholine receptor. Ann Neurol 47:504–510PubMedCrossRefGoogle Scholar
  4. 4.
    Brooks EB, Pachner AR, Drachman DB, Kantor FS (1990) A sensitive rosetting assay for detection of acetylcholine receptor antibodies using BC3H-1 cells: positive results in ‘antibody-negative’ myasthenia gravis. J Neuroimmunol 28:83–93PubMedCrossRefGoogle Scholar
  5. 5.
    Yamamoto T et al (1991) Seronegative myasthenia gravis: a plasma factor inhibiting agonist-induced acetylchoUne receptor function copurifies with IgM. Ann Neurol 30:550–557PubMedCrossRefGoogle Scholar
  6. 6.
    Plested CP, Newsom-Davis J, Vincent A (1998) Seronegative myasthenia plasmas and non-IgG fractions transiently inhibit nAChR function. Ann New York Acad Sci 841:501–504CrossRefGoogle Scholar
  7. 7.
    Plested CP (1999) Mechanism of action of seronegative myasthenia. DPhil thesis. University of OxfordGoogle Scholar
  8. 8.
    Hoch W (1999) Formation of the neuromuscular junction: agrin and its unusual receptors. Eur J Biochem 265:1–10PubMedCrossRefGoogle Scholar
  9. 9.
    Hopf C, Hoch W (1998) Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 273:6467–6473PubMedCrossRefGoogle Scholar
  10. 10.
    Hoch W, McConville J, Helms S et al (2001) Autoantibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor anti-bodies. Nat Med 7:365–368PubMedCrossRefGoogle Scholar
  11. 11.
    Hall JG, Vincent A (2001) Arthrogryposis. In: Jones HR, De Vivo DC, Darras BT (eds) Neuromuscular disorders of infancy and childwood. Butterworth-Heinemann, Woburn, USA (in press)Google Scholar
  12. 12.
    12. Drachman DB, Coulombre A (1962) Experimental clubfoot and arthrogryposis muhiplex congenita. Lancet ii:523–526CrossRefGoogle Scholar
  13. 13.
    Moessinger A (1983) Fetal akinesia deformation sequence: an animal model. Pediatrics 72:857–863PubMedGoogle Scholar
  14. 14.
    Venet-der Garabedian B, Lacokova M, Eymard B et al (1994) Association of neonatal myasthenia gravis with antibodies against the foetal acetylcholine receptor. J Clin Invest 94:555–559CrossRefGoogle Scholar
  15. 15.
    Riemersma S, Vincent A, Beeson D et al (1997) Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. J Clin Invest 98:2358–2363CrossRefGoogle Scholar
  16. 16.
    Brueton LA, Huson SM, Cox PM et al (2000) Asymptomatic maternal myasthenia as acause of the Pena-Shokeir phenotype. Am J Med Genet 1:92:1–6CrossRefGoogle Scholar
  17. 17.
    Carr SR, Gilchrist JM, Abuelo DN, Clark D (1991) Treatment of antenatal asthenia gravis. Obstet Gynecol 78:485–489PubMedGoogle Scholar
  18. 18.
    Polizzi A, Huson SM, Vincent A (2000) Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis.Teratology 62:332–341Google Scholar
  19. 19.
    Jacobson L, Beeson D, Tzartos S, Vincent A (1999) Monoclonal antibodies raised against human acetylcholine receptor bind to all five subunits of the fetal isoform. J Neuroimmunol 98:112–120PubMedCrossRefGoogle Scholar
  20. 20.
    Vincent A, Matthews I, Newsom-Davis J, Willcox N (2000) Antibodies to fetal acetylcholine receptors in parous women. Ann Neurol 48:479 (abs)Google Scholar
  21. 21.
    Bianchi DW (2000) Fetomaternal cell trafficking: a new cause of disease? Am J Med Genet Mar 6:91:22–28CrossRefGoogle Scholar
  22. 22.
    Pinto A, Gillard S, Moss F et al (1998) Human autoantibodies specific for the a1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons. Proc Natl Acad Sci USA 95:8328–8333PubMedCrossRefGoogle Scholar
  23. 23.
    Trivedi R, Mundanthanam G, Amyes E et al (2000) Autoantibody screening in subacute cerebellar ataxia. Lancet 356:565–566PubMedCrossRefGoogle Scholar
  24. 24.
    Hart IK (2000) Acquired neuromyotonia: a new autoantibody-mediated neuronal potassium channelopathy Am J Med Sci 319:209–216Google Scholar
  25. 25.
    Vincent A (2000) Understanding neuromyotonia. Muscle Nerve 23:655–657PubMedCrossRefGoogle Scholar
  26. 26.
    Serratrice G, Azulay JP (1994) Mise au point. Que reste-t-il de la chorée fibrillaire de Morvan? Rev Neurol 150:257–65PubMedGoogle Scholar
  27. 27.
    Liguori R, Vincent A, Clover L et al (2001) Morvan’s syndrome: peripheral and central nervous and cardiac involvement with antibodies to voltage-gated potassium channels and altered circadian rhythyms. Brain (in press)Google Scholar
  28. 28.
    Lugaresi E, Medori R, Montagna P et al (1986) Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N Engl J Med 315: 997–1003PubMedCrossRefGoogle Scholar
  29. 29.
    Buckley C, Oger J, Clover L et al (2001) Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 50:74–79Google Scholar
  30. 30.
    Vincent A, Lily O, Palace J (1999) Pathogenic autoantibodies to neuronal proteins in neurological disorders. J Neuroimmunol 100:169–180PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • A. Vincent
    • 1
  • C. Buckley
    • 1
  • P. Dalton
    • 1
  • L. Clover
    • 1
  • R. Liguori
    • 2
  • P. Montagna
    • 2
  • J. McConville
    • 1
  • W. Hoch
    • 3
  1. 1.Neurosciences Group, Department of Clinical Neurology, Institute of Molecular MedicineJohn Radcliffe HospitalOxfordUK
  2. 2.Institute of NeurologyUniversity of BolognaItaly
  3. 3.Max Planck Institute for Development BiologyTübingenGermany

Personalised recommendations