Epilepsy and Autoantibodies

  • P. Bernasconi
  • T. Granata
  • F. Baggi
  • L. Passerini
  • R. Mantegazza
Part of the Topics in Neuroscience book series (TOPNEURO)


For many years the central nervous system (CNS) has been considered an immune privileged site, since alloengraftment within the CNS induced a poor immune response. This weak response was explained by: (1) the presence of a blood-brain barrier (BBB); (2) constitutive lack or low expression of proteins of the immune system, such as major histocompatibility complex (MHC) class I and II, co-stimulatory and accessory molecules, on cells of the CNS (gUal cells, neurons, astrocytes); and (3) lack of lymphatic drainage [1] (see also Introduction to this volume). Nevertheless, the CNS is frequently the target of immune-mediated reactions which may have an autoimmune or an infectious aetiology. Through the years, it has become evident that autoantibodies against brain antigens exist and might lead to brain impairment and, in some disorders, are associated with seizures [2]. In this chapter, we will focus on the CNS disorders characterized by epilepsy and the presence of autoantibodies against neuronal antigens (Table 1).
Table 1

Neurological diseases characterized by epilepsy and autoantibodies


Antibody Target


Rasmussen’s encephalitis (RE) Epilepsia partialis continua Drug-resistant


Plasma exchange or protein A immunoadsorption

Systemic lupus erythematosus (SLE) Primary generalized before SLE onset

Phospholipid, Cardiolipin β2-glycoprotein I

Not reported

Therapy-resistant localization-related epilepsy

Cardiolipin, nuclear, β2-glycoprotein I GADa

Not reported

Newly diagnosed seizure

Cardiolipin, nuclear β2-glycoprotein I

Not reported

Generalized epilepsy syndromes


Not reported

West’s syndrome


Corticosteroids, intravenuous therapy

Cryptogenic Lennox-Gastaut syndrome


Intravenous therapy

Completely-controlled epilepsy


Not reported

a The presence of anti-GAD antibodies in uncontrolled and completely-controlled epilepsy is disputed [56, 57]



Systemic Lupus Erythematosus Major Histocompatibility Complex Systemic Lupus Erythematosus Patient Epitope Spreading Glutamic Acid Decarboxylase Autoantibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54PubMedCrossRefGoogle Scholar
  2. 2.
    Aarli JA (1993) Immunological aspects of epilepsy. Brain Dev 15:41–50PubMedCrossRefGoogle Scholar
  3. 3.
    Rasmussen T, Olszeweski J, Lloyd-Smith D (1958) Focal seizures due to chronic localized encephalitis. Neurology 8:435–445PubMedCrossRefGoogle Scholar
  4. 4.
    Dulac O (1996) Rasmussen’s syndrome. Curr Opin Neurol 9:75–77PubMedCrossRefGoogle Scholar
  5. 5.
    Tampieri D, Melanson D, Ethier R (1991) Imaging of chronic encephalitis. In: Andermann F (ed) Chronic encephalitis and epilepsy: Rasmussen’s syndrome. Butterworth-Heinemann, Boston, pp 47–60Google Scholar
  6. 6.
    Farrell MA, Droogan O, Secor DL et al (1995) Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. Acta Neuropathol 89:313–321PubMedCrossRefGoogle Scholar
  7. 7.
    Antozzi C, Granata T, Aurisano N et al (1998) Long-term selective IgG immunoad-sorption improves Rasmussen’s encephalitis. Neurology 51:302–305PubMedCrossRefGoogle Scholar
  8. 8.
    Andrews PI, Dichter MA, Berkovic SF et al (1996) Plasmapheresis in Rasmussen’s encephalitis. Neurology 46:242–246PubMedCrossRefGoogle Scholar
  9. 9.
    Rogers SW, Andrews PI, Gahring LC et al (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265:648–651PubMedCrossRefGoogle Scholar
  10. 10.
    Dulac O, Robain O, Chiron C et al (1991) High-dose steroid treatment of epilepsia partialis continua due to chronic focal encephalitis. In: Andermann F (ed) Chronic encephalitis and epilepsy: Rasmussen’s syndrome. Butterworth-Heinemann, Boston, pp 79–110Google Scholar
  11. 11.
    Hart YM, Cortez M, Andermann F et al (1994) Medical treatment of Rasmussen’s syndrome (chronic encephalitis and epilepsy): effect of high-dose steroids or immunoglobulin in 19 patients. Neurology 44:1030–1036PubMedCrossRefGoogle Scholar
  12. 12.
    Krauss GL, Campbell ML, Roche KW et al (1996) Chronic steroid-responsive encephalitis without autoantibodies to glutamate receptor GluR3. Neurology 46:247–249PubMedCrossRefGoogle Scholar
  13. 13.
    Gray F, Serdaru M, Baron H et al (1987) Chronic localized encephalitis (Rasmussen’s) in an adult with epilepsia partialis continua. J Neurol Neurosurg Psychiatry 50:747–751PubMedCrossRefGoogle Scholar
  14. 14.
    McLachlan RS, Girvin JP, Blume WT, Reichman H (1993) Rasmussen’s chronic encephalitis in adults. Arch Neurol 50:269–274PubMedCrossRefGoogle Scholar
  15. 15.
    Hart YM, Andermann F, Fish DR et al (1997) Chronic encephalitis and epilepsy in adults and adolescents: a variant of Rasmussen’s syndrome? Neurology 48:418–424PubMedCrossRefGoogle Scholar
  16. 16.
    Villani F, Spreafico R, Farina L et al (2001) Positive response to immunomodulatory therapy in an adult patient with Rasmussen’s encephalitis. Neurology 56:248–250PubMedCrossRefGoogle Scholar
  17. 17.
    Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 29:365–402CrossRefGoogle Scholar
  18. 18.
    Mantegazza R, Bernasconi P, Aurisano N et al (2000) Frequency of anti-GluR3 antibodies in Rasmussen’s encephalitis, other drug-resistant epilepsies, and autoimmune diseases. Neurology 54 (Suppl.3):A246Google Scholar
  19. 19.
    Frassoni C, Spreafico R, Franceschetti S et al (2001) Labeling of rat neurons by anti GluR3 IgG from patients with Rasmussen’s encephalitis. Neurology (in press)Google Scholar
  20. 20.
    Wiendl H, Bien CG, Bernasconi P et al (2001) GluR3-antibodies: prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology (in press)Google Scholar
  21. 21.
    Twyman RE, Gahring LC, Spiess J, Rogers SW (1995) Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 14:755–762PubMedCrossRefGoogle Scholar
  22. 22.
    He X-P, Patel M, Whitney KD et al (1998) Glutamate receptor GluR3 antibodies and death of cortical cells. Neuron 20:153–163PubMedCrossRefGoogle Scholar
  23. 23.
    Levite M, Fleidervish I A, Schwarz A et al (1999) Autoantibodies to the glutamate receptor kill neurons via activation of the receptor ion channel. J Autoimmun 13:61–72PubMedCrossRefGoogle Scholar
  24. 24.
    Whitney KD, Andrews PI, McNamara JO (1999) Immunoglobulin G and complement immunoreactivity in the cerebral cortex of patients with Rasmussen’s encephalitis. Neurology 53:699–708PubMedCrossRefGoogle Scholar
  25. 25.
    Morgan BP, Gasque P (1996) Expression of complement in the brain: role in health and disease. Immunol Today 17:461–466PubMedCrossRefGoogle Scholar
  26. 26.
    Yang R, Puranam RS, Butier LS et al (2000) Autoimmunity to Munc-18 in Rasmussen’s encephalitis. Neuron 28:375–383PubMedCrossRefGoogle Scholar
  27. 27.
    Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec-1-syntaxin la complex. Nature 404:355–362PubMedCrossRefGoogle Scholar
  28. 28.
    Lousa M, Sanchez-Alonso S, Rodriguez-Diaz R et al (2000) Status epilepticus with neuron-reactive serum antibodies: response to plasma exchange. Neurology 54:2163–2165PubMedCrossRefGoogle Scholar
  29. 29.
    Mackworth-Young CG, Hughes GR (1985) Epilepsy: an early symptom of systemic lupus erythematosus. J Neurol Neurosurg Psychiatry 48:185–192PubMedCrossRefGoogle Scholar
  30. 30.
    Aarh JA (2000) Epilepsy and the immune system. Arch Neurol 57:1689–1692CrossRefGoogle Scholar
  31. 31.
    Herranz MT, Rivier G, Khamashta MA et al (1994) Association between antiphospholipid antibodies and epilepsy in patients with systemic lupus erythematosus. Arthritis Rheum 37:568–571PubMedCrossRefGoogle Scholar
  32. 32.
    Chapman J, Cohen-Armon M, Shoenfeld Y, Korczyn AD (1999) Antiphospholipid antibodies permeabilize and depolarise brain synaptoneurosomes. Lupus 8:127–133PubMedCrossRefGoogle Scholar
  33. 33.
    Sabet-Arman SWL, Stidley CA, Danska J, Brooks WM (1998) Neurometabolite markers of cerebral injury in the antiphospholipid antibody syndrome of systemic lupus erythematosus. Stroke 29:2254–2260CrossRefGoogle Scholar
  34. 34.
    Liou HH, Wang CR, Chen CJ et al (1996) Elevated levels of anticardiolipin antibodies and epilepsy in lupus patients. Lupus 5:307–312PubMedCrossRefGoogle Scholar
  35. 35.
    Shrivastava A, Dwivedi S, Aggarwal A, Misra R (2001) Anti-cardiolipin and anti-ß2 glycoprotein I antibodies in Indian patients with systemic lupus erythematosus: association with the presence of seizures. Lupus 10:45–50PubMedCrossRefGoogle Scholar
  36. 36.
    Angelini L, Granata T, Zibordi F et al (1998) Partial seizures associated with antiphospholipid antibodies in childhood. Neuropediatrics 29:249–253PubMedCrossRefGoogle Scholar
  37. 37.
    Peltola JT, Haapala A, Isojärvi JI et al (2000) Antiphospholipid and antinuclear antibodies in patients with epilepsy or new-onset seizure disorders. Am J Med 109:712–717PubMedCrossRefGoogle Scholar
  38. 38.
    Caronti B, Pittoni V, Palladini G, Valesini G (1998) Anti-ß2-glycoprotein I antibodies bind to central nervous system. J Neurol Sci 156:211–219PubMedCrossRefGoogle Scholar
  39. 39.
    Kent M, Alvarez F, Bogt E et al (1997) Monoclonal antiphosphatidylserine antibodies react directly with feline and murine central nervous system. J Rheumatol 24:1725–1733PubMedGoogle Scholar
  40. 40.
    van Engelen BG, Weemaes CM, Renier WO et al (1995) A dysbalanced immune system in cryptogenic Lennox-Gastaut syndrome. Scand J Immunol 41:209–213PubMedCrossRefGoogle Scholar
  41. 41.
    Connolly AM, Chez MG, Pestronk A et al (1999) Serum autoantibodies to brain in Landau-Kleffner variant autism and other neurologic disorders. J Pediatr 134:607–613PubMedCrossRefGoogle Scholar
  42. 42.
    Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16:215–226PubMedCrossRefGoogle Scholar
  43. 43.
    Erdo S, Wolff J (1990) Gamma-aminobutyric acid outside the mammahan brain. J Neurochem 54:363–372PubMedCrossRefGoogle Scholar
  44. 44.
    Solimena M, Butler MH, De Camilli P (1994) GAD, diabetes, and stiff-man syndrome: some progress and more questions. J Endocrinol Invest 17:509–520PubMedGoogle Scholar
  45. 45.
    Martin DL, Rimvall K (1993) Regulation of γ-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407PubMedCrossRefGoogle Scholar
  46. 46.
    Solimena M, Folli F, Aparisi R et al (1990) Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 322:1555–1560PubMedCrossRefGoogle Scholar
  47. 47.
    Lohmann T, Hawa M, Leslie RDG et al (2000) Immune reactivity to glutamic acid decar-boxylase 65 in stiff-man syndrome and type 1 diabetes mellitus. Lancet 356:31–35PubMedCrossRefGoogle Scholar
  48. 48.
    Dinkel K, Meinck H-M, Jury KM et al (1998) Inhibition of γ-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol 44:194–201PubMedCrossRefGoogle Scholar
  49. 49.
    Meldrum BS (1995) Neurotransmission in epilepsy. Epilepsia 36:S30–S35PubMedCrossRefGoogle Scholar
  50. 50.
    Macdonald RL, Kelly KM (1995) Antiepileptic drug mechanisms of action. Epilepsia 36:S2–S12PubMedCrossRefGoogle Scholar
  51. 51.
    Solimena M, Folli F, Denis-Donini S et al (1988) Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type 1 diabetes mellitus. N Engl J Med 318:1012–1020PubMedCrossRefGoogle Scholar
  52. 52.
    Saiz A, Arpa J, Sagasta A et al (1997) Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 49:1026–1030PubMedCrossRefGoogle Scholar
  53. 53.
    Nemni R, Braghi S, Natali-Sora MG et al (1994) Autoantibodies to glutamic acid decar-boxylase in palatal myoclonus and epilepsy. Ann Neurol 36:665–667PubMedCrossRefGoogle Scholar
  54. 54.
    Giometto B, Nicolao P, Macucci M et al (1998) Temporal-lobe epilepsy associated with glutamic-acid-decarboxylase autoantibodies. Lancet 352:457PubMedCrossRefGoogle Scholar
  55. 55.
    Marchiori GC, Vaglia A, Vianello M et al (2001) Encephalitis associated with glutamic acid decarboxylase autoantibodies. Neurology 56:814PubMedCrossRefGoogle Scholar
  56. 56.
    Peltola J, Kulmala P, Isojärvi J et al (2000) Autoantibodies to glutamic acid decarboxy-lase in patients with therapy-resistant epilepsy. Neurology 55:46–50PubMedCrossRefGoogle Scholar
  57. 57.
    Kwan P, Sills GJ, Kelly K et al (2000) Glutamic acid decarboxylase autoantibodies in controlled and uncontrolled epilepsy: a pilot study. Epilepsy Res 42:191–195PubMedCrossRefGoogle Scholar
  58. 58.
    Archelos JJ, Härtung H-P (2000) Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci 23:317–327PubMedCrossRefGoogle Scholar
  59. 59.
    Silverman GJ (1997) B-cell superantigens. Immunol Today 18:379–386PubMedCrossRefGoogle Scholar
  60. 60.
    Albert LJ, Inman RD (1999) Molecular mimicry and autoimmunity. N Engl J Med 341:2068–2074PubMedCrossRefGoogle Scholar
  61. 61.
    O’Hara PJ, Sheppard PO, Thogersen H et al (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding domains. Neuron 11:41–52PubMedCrossRefGoogle Scholar
  62. 62.
    Sercarz EE, Lehmann PV, Ametani A et al (1993) Dominance and crypticity of T cell antigenic determinants. Ann Rev Immunol 11:729–766CrossRefGoogle Scholar
  63. 63.
    Sohnlein P, Muller M, Syren K et al (2000) Epitope spreading and a varying but not disease-specific GAD65 antibody response in type I diabetes. The Childhood Diabetes in Finland Study Group. Diabetologia 43:210–217PubMedCrossRefGoogle Scholar
  64. 64.
    Deshmukh US, Lewis JE, Gaskin F et al (2000) Ro60 peptides induce antibodies to similar epitopes shared among lupus-related autoantigens. J Immunol 164:6655–6661PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2002

Authors and Affiliations

  • P. Bernasconi
    • 1
  • T. Granata
    • 2
  • F. Baggi
    • 1
  • L. Passerini
    • 1
  • R. Mantegazza
    • 1
  1. 1.Department of Neuromuscular Diseases, National Neurological Institute “Carlo Besta”Myopathology and Immunology UnitMilanItaly
  2. 2.Department of Child Neurology, National Neurological Institute “Carlo Besta”MilanItaly

Personalised recommendations