An Introduction to Mycobacterial Taxonomy, Structure, Drug Resistance, and Pathogenesis

  • Nalin Rastogi


Referred to as “consumption” in ancient Hindu texts, and known as a debilitating lung disease during the classical Greek era, tuberculosis (TB) has been recognized as an important life-threatening human disease since the beginning of recorded history [1]. Documentation of Mycobacterium tuberculosis complex in a pre-Columbian Peruvian mummy [2], in a 5,400- year-old Egyptian subject with Pott’s disease [3], and in other ancient cases of human disease on both sides of the Atlantic[4] has led to a great deal of speculation about its origin [5, 6]. However, TB-compatible pathology in bones of North American Pleistocene bovids was recently recognized, and confirmation of M. tuberculosis complex DNA from an extinct bison dated 17,000 years suggests that TB was common as early as 20,000 years ago, a finding that questions the earlier hypothesis that TB may have arrived through early settlers to North America [7].


Mycobacterium Tuberculosis Cell Envelope Mycobacterium Avium Mycolic Acid Mycobacterial Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haas F, Haas SS (1996) The origins of Mycobacterium tuberculosis and the notion of its contagiousness. In: Rom WN, Garay S (eds) Tuberculosis. Little, Brown & Co, Boston, MA, pp 3–19Google Scholar
  2. 2.
    Salo WL, Aufderheide AC, Buikstra J, Holcomb TA (1994) Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci USA 91:2091–2094PubMedCrossRefGoogle Scholar
  3. 3.
    Crubezy E, Ludes B, Poveda JD, Clayton J, Croua-Roy B, Montagnon D (1998) Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5,400 years old. CR Acad Sci III 32:941–951CrossRefGoogle Scholar
  4. 4.
    Martin LD, Rothschild BM (1998) Earth history and the evolution of sickness. In: Greenblatt CL (ed) Digging for pathogens: ancient emerging diseases, their evolutionary, anthropological and archeological context. Balaban Publishers, pp 14–46Google Scholar
  5. 5.
    Stead WW, Eisenach KD, Cave MD, Beggs ML, Templeton GL, Thoen CO, Bates JH (1995) When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am J Respir Crit Care Med 151:1267–1268PubMedGoogle Scholar
  6. 6.
    Arriaza BT, Salo W, Aufderheide AC, Holcomb TA (1995) Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence. Am J Phys Anthropol 98:37–45PubMedCrossRefGoogle Scholar
  7. 7.
    Rothschild BM, Martin LD, Lev G, Bercovier H, BarGal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D (2001) Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33:305–311PubMedCrossRefGoogle Scholar
  8. 8.
    New Jersey Medical School, National Tuberculosis Center (1996) Brief history of tuberculosis.
  9. 9.
    Kalkut G (2000) The classroom: introduction to tuberculosis and anti-tuberculosis therapy.
  10. 10.
    Rastogi N, McFadden JJ (1992) 8th Forum in microbiology—mycobacteria and AIDS: epidemiological and genetic markers, virulence factors and interactions with the immune system. Res Microbiol 143:361–436PubMedCrossRefGoogle Scholar
  11. 11.
    Lehmann KB, Neumann R (1896) Atlas und grundriss der bakteriologie und Lehrbuch der speziellen bakteriologischen diagnostik. JF Lehmann, MunichGoogle Scholar
  12. 12.
    Goodfellow M, Wayne LG (1982) Taxonomy and nomenclature. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, vol 1: physiology, identi fication and classification. Academic Press, London, pp 471–521Google Scholar
  13. 13.
    Rastogi N (1993) Mycobacteria as intracellular pathogens: current notions of pathogenicity, virulence, and drug resistance and their relationship to effective therapy. In: Raoult D (ed) Antimicrobial agents and intracellular pathogens. CRC Press, Boca Raton, pp 245–300Google Scholar
  14. 14.
    Levy-Frebault V, Portaels F (1992) Proposed minimal standard for the genus Mycobacterium and description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323PubMedCrossRefGoogle Scholar
  15. 15.
    Rastogi N, Legrand E, Sola C (2001) The mycobacteria: an introduction to nomenclature and pathogenesis. ev Sci Tech OIE 20:21–54Google Scholar
  16. 16.
    Rastogi N, Barrow WW (1994) 11th Forum in microbiology—laboratory and clinical aspects of the Mycobacterium avium epidemic: contributing factors associated with variability of drug susceptibility and immune responsiveness, and the multifaceted nature of pathogenicity. Res Microbiol 145:167–261PubMedCrossRefGoogle Scholar
  17. 17.
    Shinnick TM, Good RC (1994) Mycobacterial taxonomy. Eur J Clin Microbiol 13:884–901CrossRefGoogle Scholar
  18. 18.
    Embley T, Stackebrandt E (1994) The molecular phy-logeny and systematics of the actinomycetes. Ann Rev Microbiol 48:257–289CrossRefGoogle Scholar
  19. 19.
    Tortoli E, Bartoloni A, Böttger E, Emler S, Garzelli C, Magliano E, Mantella A, Rastogi N, Rindi L, Scarparo C, Urbano P (2001). Burden of unidentifiable mycobacteria in a reference laboratory. J Clin Microbiol 39:4058–4065PubMedCrossRefGoogle Scholar
  20. 20.
    Bercovier H, Kafri O, Sella S (1986) Mycobacteria possess surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 136:1136–1144PubMedCrossRefGoogle Scholar
  21. 21.
    Kapur V, Li L, Hamrick M, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR, Banerjee A, Cole S, Yuen KY, Clarridge JE, Kreiswirth BN, Musser JM (1995) Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138PubMedGoogle Scholar
  22. 22.
    Springer B, Stockman L, Teschner K, Roberts, GD, Böttger EC (1996) Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 34:296–303PubMedGoogle Scholar
  23. 23.
    GenBank (2000) Taxonomy browser. http://www.
  24. 24.
    Stahl DA, Urbance JW (1990) The division between fast-and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124PubMedGoogle Scholar
  25. 25.
    Devallois A, Goh KS, Rastogi N (1997) Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp6s gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol 35:2969–2973PubMedGoogle Scholar
  26. 26.
    Legrand E, Goh KS, Sola C, Rastogi N (2000) Description of a novel Mycobacterium simiae allelic variant isolated from Caribbean AIDS patients by PCR-restriction enzyme analysis and sequencing of hsp65 gene. Mol Cell Probes 14:355–363PubMedCrossRefGoogle Scholar
  27. 27.
    Rastogi N (1991) Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol 142:464–476PubMedCrossRefGoogle Scholar
  28. 28.
    Silva MT, Macedo PM (1984) Ultrastructural characterization of normal and damaged membranes of Mycobacterium leprae and of cultivable mycobacteria. J Gen Microbiol 130:369–380PubMedGoogle Scholar
  29. 29.
    Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63PubMedCrossRefGoogle Scholar
  30. 30.
    Lee RE, Brennan PJ, Besra GS (1996) Mycobacterium tuberculosis cell envelope. Curr Topics Microbiol Immunol 215:1–27CrossRefGoogle Scholar
  31. 31.
    Asselineau J, Laneelle G (1998) Mycobacterial lipids: a historical perspective. Frontiers in Bioscience 3:164–174Google Scholar
  32. 32.
    Azuma I, Yamamura Y, Misaki A (1969) Isolation and characterization of arabinose mycolate from firmly bound lipids of mycobacteria. J. Bacteriol 98:331–333Google Scholar
  33. 33.
    Kanetsuna F, San Blas G (1970) Chemical analysis of a mycolic acid-arabinogalactan-mucopeptide complex of mycobacterial cell wall. Biochim Biophys Acta 208:434–443PubMedCrossRefGoogle Scholar
  34. 34.
    Imaeda T, Kanetsuna F, Galindo B (1968) Ultrastructure of cell walls of genus Mycobacterium. J Ultrastruct Res 25:46–63PubMedCrossRefGoogle Scholar
  35. 35.
    Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372PubMedGoogle Scholar
  36. 36.
    Rastogi N, Frehel C, Ryter A, Ohayon H, Lesourd M, David HL (1981) Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents? Antimicrob Agents Chemother 20:666–77PubMedCrossRefGoogle Scholar
  37. 37.
    Rastogi N, Frehel C, David HL (1986) Triple-layered structure of mycobacterial cell wall: evidence for the existence of a polysaccharide-rich outer layer in eighteen mycobacterial species. Curr Microbiol 13:237–242CrossRefGoogle Scholar
  38. 38.
    Rastogi N, Goh KS, David HL (1990) Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother 34:759–764PubMedCrossRefGoogle Scholar
  39. 39.
    David HL, Rastogi N, Clavel-Sérès S, Clément F (1988) Alterations in the outer wall architecture caused by the inhibition of mycoside-C biosynthesis in Mycobacterium avium. Curr Microbiol 17:61–68CrossRefGoogle Scholar
  40. 40.
    Rastogi N, Goh KS (1990) Action of 1-isonicotinyl-2-palmitoyl hydrazine against the Mycobacterium avium complex and enhancement of its activity by m-fluoro-phenylalanine. Antimicrob Agents Chemother 34:2061–2064PubMedCrossRefGoogle Scholar
  41. 41.
    Rastogi N, Goh KS, Wright EL, Barrow WW (1994) Potential drug targets for Mycobacterium avium defined by radiometric drug-inhibitor combination techniques. Antimicrob Agents Chemother 38:2287–2295PubMedCrossRefGoogle Scholar
  42. 42.
    Frehel C, de Chastellier C, Lang T, Rastogi N (1986) Evidence for inhibition of fusion of the lysosomal and prelysosomal compartments with phagosomes in macrophages infected with the pathogenic Mycobacterium avium. Infect Immun 52:252–262PubMedGoogle Scholar
  43. 43.
    Fréhel C, Ryter A, Rastogi N, David HL (1986) The elctron transparent zone in phagocytized Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann Inst Pasteur/Microbiol 137B:239–257CrossRefGoogle Scholar
  44. 44.
    Fréhel C, Thorel MF, Rastogi N (1989) Evidence that host-recycling of Mycobacterium avium preserves its ability to hinder macrophage killing functions. Acta Laprol (Geneva) 7[Suppl 1]:S160–S163Google Scholar
  45. 45.
    Fréhel C, Rastogi N, Bénichou J-C, Ryter A (1988) Do test tube-grown mycobacteria possess a protective capsule? FEMS Microbiol Lett 56:225–230CrossRefGoogle Scholar
  46. 46.
    Rastogi N, Hellio R (1990) Evidence that the capsule around mycobacteria grown in axenic media contains mycobacterial antigens: implications at the level of cell envelope architecture. FEMS Microbiol Lett 70:161–166Google Scholar
  47. 47.
    Rastogi N, Hellio R, David HL (1991) A new insight into the mycobacterial cell envelope architecture by the localization of antigens in ultrathin sections. Zentralbl Bakteriol 275:287–302PubMedCrossRefGoogle Scholar
  48. 48.
    Benedetti EL, Dunia I, Ludosky MA, Van Man, Trach DD, Rastogi N, David HL (1984) Freeze-etching and freeze-fracture structural features of the cell envelopes in mycobacteria and leprosy-derived corynebacteria. Acta Leprol (Geneva) 2:237–248Google Scholar
  49. 49.
    McNeil MR, Brennan PJ (1991) Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol 142:451–463PubMedCrossRefGoogle Scholar
  50. 50.
    Minnikin DE (1982) Lipids: complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C, Stanford J (ed) The biology of mycobacteria, vol 1. Academic Press, London, pp 95–184Google Scholar
  51. 51.
    Minnikin DE (1991) Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res Microbiol 142:423–427PubMedCrossRefGoogle Scholar
  52. 52.
    Nikaido H, Jarlier V (1991) Permeability of the mycobacterial cell wall. Res Microbiol 142:437–443PubMedCrossRefGoogle Scholar
  53. 53.
    Christensen H, Garton NJ, Horobin RW, Minnikin DE, Barer MR (1999) Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol 31:1561–1572PubMedCrossRefGoogle Scholar
  54. 54.
    Dmitriev BA, Ehlers S, Rietschel ET, Brennan PJ (2000) Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol 290:251–258PubMedCrossRefGoogle Scholar
  55. 55.
    Nikaido H, Kim SH, Rosenberg EY (1993) Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 8:1025–1030PubMedCrossRefGoogle Scholar
  56. 56.
    Draper P (1998) The outer parts of the mycobacterial envelope as permeability barriers. Frontiers in Bioscience 3:1253–1261Google Scholar
  57. 57.
    Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18PubMedCrossRefGoogle Scholar
  58. 58.
    Rastogi N, Moreau B, Capmau ML, Goh KS, David HL (1988) Antibacterial action of amphipathic derivatives of isoniazid against the Mycobacterium avium complex. Zbl Bakt Hyg A 268:456–462Google Scholar
  59. 59.
    Jarlier V, Nikaido H (1990) Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172:1418–1423PubMedGoogle Scholar
  60. 60.
    Senaratne RH, Mobasheri H, Papavinasasundaram KG, Jenner P, Lea EJ, Draper P (1998) Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37RV. J Bacteriol 180:3541–3547PubMedGoogle Scholar
  61. 61.
    Niederweis M, Egrt S, Heinz C, Klocker U, Karosi S, Swiderek KM, Riley LW, Benz R (1999) Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33:933–945PubMedCrossRefGoogle Scholar
  62. 62.
    Pablo-Mendez A, Laszlo A, Bustreo F, Binkin N, Cohn DL, Lambregts-van Weezenbeek CSB, Kim SJ, Chaulet P, Nunn P, Raviglione MC (1997) Anti-tuberculosis drug resistance in the world: the WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. World Health Organization, GenevaGoogle Scholar
  63. 63.
    Rastogi N (2000) Mycobactéries et antibiotiques. In: Freney J, Renaud F, Hansen W, Bollet C (eds) Précis de bactériologie clinique. Editions ESKA, Paris, pp 1071–1094Google Scholar
  64. 64.
    Rastogi N, Goh KS, David HL (1989) Drug susceptibility testing in tuberculosis: a comparison of the proportion methods using Lowenstein-Jensen, Middle-brook 7H10 and 7H11 agar media and a radiometric method. Res Microbiol 140:405–417PubMedCrossRefGoogle Scholar
  65. 65.
    Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH. (1998). Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36:362–366PubMedGoogle Scholar
  66. 66.
    Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822PubMedCrossRefGoogle Scholar
  67. 67.
    Riska PF, Su Y, Bardarov S, Freundlich L, Sarkis G, Hatfull G, Carriere C, Kumar V, Chan J, Jacobs WR Jr (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37:1144–1149PubMedGoogle Scholar
  68. 68.
    Miyamoto J, Koga H, Kohno S, Tashiro T, Hara K (1996) New drug susceptibility test for Mycobacterium tuberculosis using the hybridization protection assay. J Clin Microbiol 34:1323–1326PubMedGoogle Scholar
  69. 69.
    Koga H, Miyamoto J, Ohno H, Ogawa K, Tomono K, Tashiro T, Kohno S (1997) A rapid drug susceptibility test for Mycobacterium tuberculosis using the hybridization protection assay. J Antimicrob Chemother 40:189–194PubMedCrossRefGoogle Scholar
  70. 70.
    Reisner BS, Gatson AM, Woods GL (1995) Evaluation of mycobacteria growth indicator tubes for susceptibility testing of Mycobacterium tuberculosis to isoni-azid and rifampin. Diagn Microbiol Infect Dis 22:325–329PubMedCrossRefGoogle Scholar
  71. 71.
    Bemer P, Palicova F, Rusch-Gerdes S, Drugeon HB, Pfyffer GE (2002) Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 40:150–154PubMedCrossRefGoogle Scholar
  72. 72.
    Goloubeva V, Lecocq M, Lassowsky P, Matthys F, Portaels F, Bastian I (2001) Evaluation of mycobacteria growth indicator tube for direct and indirect drug susceptibility testing of Mycobacterium tuberculosis from respiratory specimens in a Siberian prison hospital. J Clin Microbiol 39:1501–1505PubMedCrossRefGoogle Scholar
  73. 73.
    Shoeb HA, Bowman BU, Jr, Ottolenghi AC, Merola AJ (1985) Peroxidase-mediated oxidation of isoniazid. Antimicrob Agents Chemother 27:399–403PubMedCrossRefGoogle Scholar
  74. 74.
    Shoeb HA, Bowman BU, Jr, Ottolenghi AC, Merola AJ (1985), Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 27:404–407PubMedCrossRefGoogle Scholar
  75. 75.
    Subbaiah TV, Mitchison DA, Selkon JB (1960) The susceptibility to hydrogen peroxide of Indian and British isoniazid-sensitive and isoniazid-resistant tubercle bacilli. Tubercle 41:323–333CrossRefGoogle Scholar
  76. 76.
    Mitchison DA, Selkon JB, Lloyd J (1963) Virulence in the guinea pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from south India and British patients. J Pathol Bacteriol 86:377–386PubMedCrossRefGoogle Scholar
  77. 77.
    Jackett PS, Aber VR, Lowrie DB (1978) Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 104:37–45PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593PubMedCrossRefGoogle Scholar
  79. 79.
    Heym B, Zhang Y, Poulet S, Young D, Cole ST (1993) Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 175:4255–4259PubMedGoogle Scholar
  80. 80.
    Zhang Y, Garbe T, Young D (1993) Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Molec Microbiol 8:521–524CrossRefGoogle Scholar
  81. 81.
    Telenti A, Persing DH (1996) Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis. Res Microbiol 147:73–79PubMedCrossRefGoogle Scholar
  82. 82.
    Telenti A (1997) Genetics of drug resistance in tuberculosis. Clin Chest Med 18:55–64PubMedCrossRefGoogle Scholar
  83. 83.
    Ramaswami S, Musser J (1998) Molecular genetic basis of antimicrobial agents resistance in Mycobacterium tuberculosis: 1998 update. Tubercle Lung Dis 79:3–29CrossRefGoogle Scholar
  84. 84.
    Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistant mutations in Mycobacterium tuberculosis. Lancet 341:647–650PubMedCrossRefGoogle Scholar
  85. 85.
    Traore H, Fissette K, Bastian I, Devleeschouwer M, Portaels F (2000) Detection of rifampin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int J Tuberc Lung Dis 4:481–484PubMedGoogle Scholar
  86. 86.
    Kim BJ, Kim SY, Park BH, Lyu MA, Park IK, Bai GH, Kim SJ, Cha CY, Kook YH (1997) Mutations in the rpoB gene of Mycobacterium tuberculosis that intefere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol 35:492–494PubMedGoogle Scholar
  87. 87.
    Nash KA, Gaytan A, Inderlied CB (1997) Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid simple and specific RNA/RNA mismatch assay. J Infect Dis 176:533–536PubMedCrossRefGoogle Scholar
  88. 88.
    De Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R, Traore H, Portaels F (1995) Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tubercle Lung Dis 76:425–430CrossRefGoogle Scholar
  89. 89.
    Mokrousov I, Filliol I, Legrand E, Sola C, Otten T, Vyshnevskaya E, Limeschenko E, Vyshnevskiy B, Narvskaya O, Rastogi N (2002) Molecular characterization of multiple-drug-resistant Mycobacterium tuberculosis isolates from northwestern Russia and analysis of rifampin resistance using RNA/RNA mismatch analysis as compared to the line probe assay and sequencing of the rpoB gene. Res Microbiol 153:213–219PubMedCrossRefGoogle Scholar
  90. 90.
    Garcia de Viedma D, del Sol Diaz Infantes M, Lasala F, Chaves F, Alcala L, Bouza E (2002) New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis. J Clin Microbiol 40:988–995PubMedCrossRefGoogle Scholar
  91. 91.
    Head SR, Parikh K, Rogers YH, Bishai W, Goelet P, Boyce-Jacino MT (1999) Solid-phase sequence scanning for drug resistance detection in tuberculosis. Mol Cell Probes 13:81–87PubMedCrossRefGoogle Scholar
  92. 92.
    Rastogi N, Falkinham JO, III (1994) 13th Forum in microbiology—solving the dilemma of antimycobacterial chemotherapy. Res Microbiol 147:7–121CrossRefGoogle Scholar
  93. 93.
    Rastogi N, Labrousse V (1991) Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampicin against Mycobacterium avium complex. Antimicrob Agents Chemother 35:462–470PubMedCrossRefGoogle Scholar
  94. 94.
    Rastogi N, Labrousse V, Carvalho de Sousa (1993) Ethambutol potentiates extracellular and intracellular activities of clarithromycin, Sparfloxacin, amikacin and rifampin against Mycobacterium avium. Curr Microbiol 26:191–196CrossRefGoogle Scholar
  95. 95.
    Barrow WW, Wright EL, Goh KS, Rastogi N (1993) Activity of fluoroquinolone, macrolide and aminoglycoside drugs against Mycobacterium avium using inhibitors of glycosylation, fatty acid and peptide biosynthesis. Antimicrob Agents Chemother 37:652–661PubMedCrossRefGoogle Scholar
  96. 96.
    Jarlier V, Gutmann L, Nikaido H (1991) Interplay of cell wall barrier and beta-lactamase activity determines high resistance to beta-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother 35:1937–1939PubMedCrossRefGoogle Scholar
  97. 97.
    David HL, Rastogi N, Clavel-Sérès S, Clément F, Thorel MF (1987) Structure of the cell envelope of Mycobacterium avium. Zbl Bakt Hyg A 264:49–66Google Scholar
  98. 98.
    Liu J, Barry CE 3rd, Besra GS, Nikaido H (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551PubMedCrossRefGoogle Scholar
  99. 99.
    Jackson M, Raynaud C, Laneelle MA, Guilhot C, Lau rent-Winter C, Ensergueix D, Gicquel B, Daffe M (1999) Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–87PubMedCrossRefGoogle Scholar
  100. 100.
    Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854PubMedCrossRefGoogle Scholar
  101. 101.
    Stahl C, Kubetzko S, Kaps I, Seeber S, Engelhardt H, Niederweis M (2001) MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 40:451–464PubMedCrossRefGoogle Scholar
  102. 102.
    van Crevel R, Ottenhoff THM, van der Meer JWM (2002) Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 15:294–309PubMedCrossRefGoogle Scholar
  103. 103.
    Dannenberg AM Jr, Rook GA (1994) Pathogenesis of pulmonary tuberculosis: an interplay between tissue damaging and macrophage-activating immune responses—dual mechanisms that control bacillary multiplication. In Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM Press, Washington DC, pp 459–484Google Scholar
  104. 104.
    Boddingius J (1977) Ultrastructural changes in blood vessels of peripheral nerves in leprosy neuropathy. II. Borderline, borderline-lepromatous and lepromatous leprosy patients. Acta Neuropathol (Berlin) 40:21–39CrossRefGoogle Scholar
  105. 104.
    Boddingius J (1977) Ultrastructural changes in blood vessels of peripheral nerves in leprosy neuropathy. II. Borderline, borderline-lepromatous and lepromatous leprosy patients. Acta Neuropathol (Berlin) 40:21–39CrossRefGoogle Scholar
  106. 106.
    Myrvik QN, Leake ES, Wright MJ (1984) Disruption of phagosomal membranes of normal alveolar macrophages by the H37RV strain of Mycobacterium tuberculosis. A correlate of virulence. Am Rev Respir Dis 129:322–328PubMedGoogle Scholar
  107. 107.
    Frehel C, Rastogi N (1987) Mycobacterium leprae surface components intervene in the early phagosome-lysosome fusion inhibition event. Infect Immun 55:2916–2921PubMedGoogle Scholar
  108. 108.
    Sibley LD, Franzblau SG, Krahenbuhl JL (1987) Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect Immun 55:680–685PubMedGoogle Scholar
  109. 109.
    McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61:2763–2773PubMedGoogle Scholar
  110. 110.
    Russell DG, Dant J, Sturgill-Koszycki S (1996) Mycobacterium avium-and Mycobacterium tubercu-losis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphin-golipids from the host cell plasmalemma. J Immunol 156:4764–4773PubMedGoogle Scholar
  111. 111.
    Armstrong JA, d’Arcy Hart P (1975) Phagosome-lyso-some fusion interaction in cultured macrophages infected with virulent tubercle bacteria. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 142:1–16PubMedCrossRefGoogle Scholar
  112. 112.
    Goren MB (1970) Sulfolipid I of Mycobacterium tuberculosis, strain H37RV. I. Purification and proper-ties. Biochim Biophys Acta 210:116–126PubMedCrossRefGoogle Scholar
  113. 113.
    Hellio R, Fréhel C, Rauzier J-Y, Rastogi N (1988) Electron cytochemistry of mycobacteria: evidence that strongly acidic sulfate groups are present on the surface of H37RV (virulent) strain of Mycobacterium tuberculosis. Curr Microbiol 17:235–242CrossRefGoogle Scholar
  114. 114.
    Vercellone A, Nigou J, Puzo G (1998) Relationships between the structure and the roles of lipoarabino-mannans and related glycoconjugates in tuberculous pathogenesis. Frontiers in Bioscience 3:149–163Google Scholar
  115. 115.
    Rastogi N, David HL (1988) Mechanisms of pathogenicity in mycobacteria. Biochimie 70:1101–1120PubMedCrossRefGoogle Scholar
  116. 116.
    Quinn FD, Newman GW, King CH (1996) Virulence determinants of Mycobacterium tuberculosis. Curr Topics Microbiol Immunol 215:131–156CrossRefGoogle Scholar
  117. 117.
    Rastogi N (1991) 7th Forum in microbiology—structure and functions of the cell envelope in relation to mycobacterial virulence, pathogenicity and multiple drug-resistance. Res Microbiol 142:419–481CrossRefGoogle Scholar
  118. 118.
    George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, Small PL (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854–857PubMedCrossRefGoogle Scholar
  119. 119.
    Beltan E, Horgen L, Rastogi N (2000) Secretion of cytokines by human macrophages upon infection by pathogenic and nonpathogenic mycobacteria. Microb Pathog 28:313–318PubMedCrossRefGoogle Scholar
  120. 120.
    O’Brien L, Roberts B, Andrew PW (1996) In vitro interaction of Mycobacterium tuberculosis and macrophages: activation of anti-mycobacterial activity of macrophages and mechanisms of anti-mycobacterial activity. Curr Topics Microbiol Immunol 215:97–130CrossRefGoogle Scholar
  121. 121.
    Brennan PJ, Goren MB (1979) Structural studies on the type-specific antigens and lipids of the Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum serocomplex, Mycobacterium intracellulare serotype 9. J Biol Chem 254:4205–4211PubMedGoogle Scholar
  122. 122.
    Barrow WW, Ullom BP, Brennan PJ (1980) Peptido-glycolipid nature of the superficial cell wall sheath of smooth-colony-forming mycobacteria. J Bacteriol 144:814–822PubMedGoogle Scholar
  123. 123.
    Tereletsky MJ, Barrow WW (1983) Postphagocytic detection of glycopeptidolipids associated with the superficial L1 layer of Mycobacterium intracellulare. Infect Immun 41:1312–1321PubMedGoogle Scholar
  124. 124.
    Rulong S, Aguas AP, Da Silva PP, Silva MT (1991) Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver. Infect Immun 59:3895–3902PubMedGoogle Scholar
  125. 125.
    Hellio R, Fréhel C, Rauzier J-Y, Rastogi N (1988) Electron cytochemistry of mycobacteria: evidence that strongly acidic sulfate groups are present on the surface of H37RV (virulent) strain of Mycobacterium tuberculosis. Curr Microbiol 17:235–242CrossRefGoogle Scholar
  126. 126.
    Hooper LC, Johnson MM, Khera VR, Barrow WW (1986) Macrophage uptake and retention of radiolabeled glycopeptidolipid antigens associated with the superficial L1 layer of Mycobacterium intracellulare serovar 20. Infect Immun 54:133–141PubMedGoogle Scholar
  127. 127.
    Lopez-Marin LM, Quesada D, Lakhdar-Ghazal F, Tocanne J-F, Lanéelle G (1994) Interactions of mycobacterial glycopeptidolipids with membranes: influence of carbohydrate on induced alterations. Biochemistry 33:7056–7061PubMedCrossRefGoogle Scholar
  128. 128.
    Tsuyuguchi I, Kawasumi H, Takashima T, Tsuyuguchi T, Kishimoto S (1990) Mycobacterium avium-Mycobacterium intracellular e complex-induced suppression of T-cell proliferation in vitro by regulation of monocyte accessory cell activity. Infect Immun 58:1369–1378PubMedGoogle Scholar
  129. 129.
    Sut A, Sirugue S, Sixou S, Lakhdar-Ghazal F, Tocanne J-F, Laneelle G (1990) Mycobacteria glycolipids as potential pathogenicity effectors: alteration of model and natural membranes. Biochemistry 29:8498–8502PubMedCrossRefGoogle Scholar
  130. 130.
    Hooper LC, Barrow WW (1988) Decreased mitogenic response of murine spleen cells following intraperitoneal injection of serovar-specific glycopeptidolipid antigens from the Mycobacterium avium complex. Adv Exper Med Biol 239:309–325Google Scholar
  131. 131.
    Brownback PE, Barrow WW (1988) Modified lymphocyte response to mitogens after intraperitoneal injection of glycopeptidolipid antigens from Mycobacterium avium complex. Infect Immun 56:1044–1050PubMedGoogle Scholar
  132. 132.
    Tassell SK, Pourshafie M, Wright EL, Richmond MG, Barrow WW (1992) Modified lymphocyte response to mitogens induced by the lipopeptide fragment derived from Mycobacterium avium serovar-specific glycopeptidolipids. Infect Immun 60:706–711PubMedGoogle Scholar
  133. 133.
    Horgen L, Barrow EL, Barrow WW, Rastogi N (2000) Exposure of human peripheral blood mononuclear cells to total lipids and serovar-specific glycopeptidolipids from Mycobacterium avium serovars 4 and 8 results in inhibition of TH1-type responses. Microb Pathog 29:9–16PubMedCrossRefGoogle Scholar
  134. 134.
    Barrow WW, Carvalho de Sousa JP, Davis TL, Wright EL, Bachelet M, Rastogi N (1993) Immunomodulation of human peripheral blood mononuclear cell functions by defined lipid fractions of Mycobacterium avium. Infect Immun 61:5286–5293PubMedGoogle Scholar
  135. 135.
    Barrow WW, Davis TL, Wright EL, Labrousse V, Bachelet M, Rastogi N (1995) Immunomodulatory spectrum of lipids associated with Mycobacterium avium serovar 8. Infect Immun 63:126–133PubMedGoogle Scholar
  136. 136.
    Belisle JT, McNeil MR, Chatterjee D, Inamine JM, Brennan PJ (1993) Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium. J Biol Chem 268:10510–10516PubMedGoogle Scholar
  137. 137.
    Rastogi N (1990) 5th Forum in microbiology—killing intracellular mycobacteria: dogmas and realities. Res Microbiol 141:191–270CrossRefGoogle Scholar
  138. 138.
    Furney SK, Skinner PS, Roberts AD, Appelberg R, Orme IM (1992) Capacity of Mycobacterium avium isolates to grow well or poorly in murine macrophages resides in their ability to induce secretion of tumor necrosis factor. Infect Immun 60:4410–4413PubMedGoogle Scholar
  139. 139.
    Blanchard DK, Michelini-Norris MB, Pearson CA, Freitag CS, Djeu JY (1991) Mycobacterium aviumintracellulare induces interleukin-6 from human monocytes and large granular lymphocytes. Blood 77:2218–2224PubMedGoogle Scholar
  140. 140.
    Belisle JT, Brennan PJ (1994) Molecular basis of colony morphology in Mycobacterium avium. Res Microbiol 145:237–242PubMedCrossRefGoogle Scholar
  141. 141.
    Rastogi N, Barrow WW (1994) Cell envelope constituents and the multifaceted nature of Mycobacterium avium pathogenicity and drug resistance. Res Microbiol 145:243–252PubMedCrossRefGoogle Scholar
  142. 142.
    Casanova J-L, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedCrossRefGoogle Scholar
  143. 143.
    Deerojanawong J, Chang AB, Eng PA, Robertson CF, Kemp AS (1997) Pulmonary diseases in children with severe combined immune deficiency and DiGeorge syndrome. Pediatr Pulmonol 24:324–330PubMedCrossRefGoogle Scholar
  144. 144.
    Pasic S, Lilic D, Pejnovic N, Vojvodic D, Simic R, Abinun M (1998) Disseminated Bacillus Calmette-Guerin infection in a girl with hyperimmunoglobulin E syndrome. Acta Paediatr 87:702–704PubMedCrossRefGoogle Scholar
  145. 145.
    Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, Resnick I, Fasth A, Baer M, Gomez L, Sanders EA, Tabone MD, Plantaz D, Etzioni A, Monafo V, Abinun M, Hammarstrom L, Abrahamsen T, Jones A, Finn A, Klemola T, DeVries E, Sanal O, Peitsch MC, Notarangelo LD (1997) Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 131:47–54PubMedCrossRefGoogle Scholar
  146. 146.
    Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 79:155–169PubMedCrossRefGoogle Scholar
  147. 147.
    Lau YL, Chan GC, Ha SY, Hui YF, Yuen KY (1998) The role of phagocytic respiratory burst in host defense against Mycobacterium tuberculosis. Clin Infect Dis 26:226–227PubMedCrossRefGoogle Scholar
  148. 148.
    Frix CD 3rd, Bronson DM (1986) Acute miliary tuberculosis in a child with anhidrotic ectodermal dysplasia. Pediatr Dermatol 3:464–467PubMedCrossRefGoogle Scholar
  149. 149.
    Levin M, Newport MJ, D’Souza S, Kalabalikis P, Brown IN, Lenicker HM, Agius PV, Davies EG, Thrasher A, Klein N, Blackwell J (1995) Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet 345:79–83PubMedCrossRefGoogle Scholar
  150. 150.
    Casanova JL, Jouanguy E, Lamhamedi S, Blanche S, Fischer A (1995) Immunological conditions of children with BCG disseminated infection. Lancet 346:581PubMedCrossRefGoogle Scholar
  151. 151.
    Casanova JL, Blanche S, Emile JF, Jouanguy E, Lamhamedi S, Altare F, Stephan JL, Bernaudin F, Bordigoni P, Turck D, Lachaux A, Albertini M, Bourrillon A, Dommergues JP, Pocidalo MA, Le Deist F, Gaillard JL, Griscelli C, Fischer A (1996) Idiopathic disseminated bacillus Calmette-Guerin infection: a French national retrospective study. Pediatrics 98:774–778PubMedGoogle Scholar
  152. 152.
    Frucht DM, Holland SM (1996) Defective monocyte costimulation for IFN-gamma production in familial disseminated Mycobacterium avium complex infection: abnormal IL-12 regulation. J Immunol 157:411–416PubMedGoogle Scholar
  153. 153.
    Stead WW (1992) Genetics and resistance to tuberculosis. Could resistance be enhanced by genetic engineering? Ann Intern Med 116:93–941Google Scholar
  154. 154.
    Stead WW (1997) The origin and erratic global spread of tuberculosis. How the past explains the present and is the key to the future. Clin Chest Med 18:65–77PubMedCrossRefGoogle Scholar
  155. 155.
    Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322:422–427PubMedCrossRefGoogle Scholar
  156. 156.
    Comstock GW (1978) Tuberculosis in twins: a reanalysis of the Prophit survey. Am Rev Respir Dis 117:621–624PubMedGoogle Scholar
  157. 157.
    Chakravartti MR, Vogel FA (1973) A twin study of leprosy. Top Hum Genet 1:1–123Google Scholar
  158. 158.
    Abel L, Lap VD, Oberti J, Thuc NV, Cua VV, Guil-loud-Bataille M, Schurr E, Lagrange PH (1995) Complex segregation analysis of leprosy in southern Vietnam. Genet Epidemiol 12:63–82PubMedCrossRefGoogle Scholar
  159. 159.
    Abel L, Demenais F (1988) Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade Island. Am J Hum Genet 42:25–66Google Scholar
  160. 160.
    Abel L, Dessein AJ (1998) Genetic epidemiology of infectious diseases in humans: design of population-based studies. Emerg Infect Dis 4:593–603PubMedCrossRefGoogle Scholar
  161. 161.
    Bothamley GH, Beck JS, Schreuder GM, D’Amaro J, de Vries RR, Kardjito T, Ivanyi J (1989) Association of tuberculosis and M. tuberculosis-spedüc antibody levels with HLA. J Infect Dis 159:549–555PubMedCrossRefGoogle Scholar
  162. 162.
    Brahmajothi V, Pitchappan RM, Kakkanaiah VN, Sashidhar M, Rajaram K, Ramu S, Palanimurugan K, Paramasivan CN, Prabhakar R (1991) Association of pulmonary tuberculosis and HLA in south India. Tubercle 72:123–132PubMedCrossRefGoogle Scholar
  163. 163.
    Rajalingam R, Mehra NK, Jain RC, Myneedu VP, Pande JN (1996) Polymerase chain reaction-based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: relevance to chemotherapy and disease severity. J Infect Dis 173:669–676PubMedCrossRefGoogle Scholar
  164. 164.
    Ottenhoff TH, de Vries RR (1987) HLA class II immune response and suppression genes in leprosy. Int J Lepr Other Mycobact Dis 55:521–534PubMedGoogle Scholar
  165. 165.
    Skamene E, Gros P, Forget A, Kongshavn PA, St Charles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297:506–509PubMedCrossRefGoogle Scholar
  166. 166.
    Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338:640–644PubMedCrossRefGoogle Scholar
  167. 167.
    Cervino AC, Lakiss S, Sow O, Hill AV (2000) Allelic association between the NRAMPi gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet 64:507–512PubMedCrossRefGoogle Scholar
  168. 168.
    Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S (2000) 30 UTR polymorphisms in the NRAMPi gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 4:577–580PubMedGoogle Scholar
  169. 169.
    Abel L, Sanchez FO, Oberti J, Thuc NV, Hoa LV, Lap VD, Skamene E, Lagrange PH, Schurr E (1998) Susceptibility to leprosy is linked to the human NRAMP1 gene. J Infect Dis 177:133–145PubMedCrossRefGoogle Scholar
  170. 170.
    Shaw MA, Atkinson S, Dockrell H, Hussain R, Lins-Lainson Z, Shaw J, Ramos F, Silveira F, Mehdi SQ, Kaukab F, Khaliq S, Chiang T, Blackwell J (1993) An RFLP map for 2q33-q37 from multicase mycobacterial nd leishmanial disease families: no evidence for an Lsh/Ity/Bcg gene homologue influencing susceptibility to leprosy. Ann Hum Genet 57:251–271PubMedCrossRefGoogle Scholar
  171. 171.
    Levee G, Liu J, Gicquel B, Chanteau S, Schurr E (1994) Genetic control of susceptibility to leprosy in French Polynesia: no evidence for linkage with markers on telomeric human chromosome 2. Int J Lepr Other Mycobact Dis 62:499–511PubMedGoogle Scholar
  172. 172.
    McMurray DN (2001) Disease model: pulmonary tuberculosis. Trends Mol Med 7:135–137PubMedCrossRefGoogle Scholar
  173. 173.
    Stenger S, Modlin RL (1999) T cell mediated immunity to Mycobacterium tuberculosis. Curr Opin Microbiol 2:89–93PubMedCrossRefGoogle Scholar
  174. 174.
    Flynn JL, Ernst JD (2000) Immune responses in tuberculosis. Curr Opin Immunol 12:432–436PubMedCrossRefGoogle Scholar
  175. 175.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129PubMedCrossRefGoogle Scholar
  176. 176.
    Corner LA, Barrett RH, Lepper AW, Lewis V, Pearson CW (1981) A survey of mycobacteriosis of feral pigs in the northern territory. Aust Vet J 57:537–542PubMedCrossRefGoogle Scholar
  177. 177.
    Hardy RM, Watson JM (1992) Mycobacterium bovis in England and Wales: past, present and future. Epidemiol Infect 109:23–33Google Scholar
  178. 178.
    Essey MA, Koller MA (1994) Status of bovine tuberculosis in North America. Vet Microbiol 40:15–22PubMedCrossRefGoogle Scholar
  179. 179.
    de Kantor IN, Ritacco V (1994) Bovine tuberculosis in Latin America and the Caribbean: current status, control and eradication programs. Vet Biol 40:5–14Google Scholar
  180. 180.
    Altwood KS (2000) Tuberculosis in captive wild animals, or Bambi has a cough. A summary of the 30th world congress on lung health, Madrid, Spain, Sept 14-18,1999.
  181. 181.
    Legrand E, Sola C, Rastogi N (2000) Le complexe Mycobacterium avium-intracellulare: marqueurs phénotypiques et génotypiques et les bases moléculaires de la transmission inter-espèces. Bull Soc Pathol Exot 93:182–192PubMedGoogle Scholar
  182. 182.
    Saxegaard F, Baess I (1988) Relationship between Mycobacterium avium, Mycobacterium paratuberculosis and “wood pigeon mycobacteria”. Determinations by DNA-DNA hybridization. APMIS 96:37–42PubMedCrossRefGoogle Scholar
  183. 183.
    Thorel MF, Krichevsky M, Levy-Frebault VV (1990) Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of M. avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuber-culosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol 40:254–260PubMedCrossRefGoogle Scholar
  184. 184.
    Martin G, Schimmel D (2000) Mycobacterium avium infections in poultry—a risk for human health or not ? DTW Dtsch Tierarztl Wochenschr 107:53–58PubMedGoogle Scholar
  185. 185.
    Thorel MF (1984) Review of mycobactin-dependence among mycobacteria species. Ann Rech Vet 15:405–409PubMedGoogle Scholar
  186. 186.
    Chiodini RJ, Van Kruiningen HJ, Merkal RS (1984) Ruminant paratuberculosis (JOHNE’s disease): the current status and future prospects. Cornell Vet 74:218–262PubMedGoogle Scholar
  187. 187.
    Chiodini RJ (1989) Crohn’s disease and the mycobacterioses: a review and comparisons of two diseases entities. Clin Microbiol Rev 2:90–117PubMedGoogle Scholar
  188. 188.
    Greig A, Stevenson K, Henderson D, Perez V, Hughes V, Pavlik I, Hines ME II, McKendrick I, Sharp JM (1999) Epidemiological study of paratuberculosis in wild rabbits in Scotland. J Clin Microbiol 37:1746–1751PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • Nalin Rastogi

There are no affiliations available

Personalised recommendations