Immunopathogenesis of AIDS

  • Fernando Aiuti
  • Marco Marziali
  • Antonella Isgrò
  • Ivano Mezzaroma


Infection with human immunodeficiency virus type 1 (HIV-1) progressively determines a loss in the number and function of CD4 + T cells, which is responsible for the onset of opportunistic infections and/or neoplasias that characterize the late stage of HIV-1 disease (full-blown AIDS) [1, 2]. HIV-i subverts the immune system by infecting CD4 + T cells that normally orchestrate immune responses, and by activating the immune system and inducing a cytokine milieu that the virus uses to its own replicative advantage [3]. It is clear that HIV-i induces dysfunction of almost all of the elements of the immune system and that the pathogenetic mechanisms of the disease progression are multifactorial. Although the mechanisms of the CD4 + T cell depletion and dysfunction in vitro have been elucidated, it remains uncertain which of these mechanisms are responsible for clinically relevant immune deficiency in vivo [4].


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Simian Immunodeficiency Virus Multicenter AIDS Cohort Study Plasma Viremia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dalgleish AG, Beverly PC, Claphman PR, et al(1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767PubMedCrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control (1993) Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 41:1–19Google Scholar
  3. 3.
    Cohen O, Cicala C, Vaccarezza M, Fauci AS (2000) The immunology of human immunodeficiency virus infection. In: Mandell GL, Bennett JE and Dolin R (eds) Principles and practise of infectious diseases. Churchill Livingstone, Philadelphia, pp 1374–1397Google Scholar
  4. 4.
    Fauci AS (1993) Multifactorial nature of human immunodeficiency virus diseases: implications for therapy. Science 262:1011–1018PubMedCrossRefGoogle Scholar
  5. 5.
    Daniel M, Kirchoff F, Czajak SC, et al(1992) Protective effects of a live attenuated vaccine with a deletion in the nef gene. Science 238:1938–1941CrossRefGoogle Scholar
  6. 6.
    Wyand MS, Manson KH, Garcia-Moll M, et al(1996) Vaccine protection by a triple deletion mutant of simian immunodeficiency virus. J Virol 70:3724–3733PubMedGoogle Scholar
  7. 7.
    Deacon NJ, Tsykin A, Solomon A, et al(1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991PubMedCrossRefGoogle Scholar
  8. 8.
    Paxton WA, Martin SR, Tse D, et al(1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2:412–417PubMedCrossRefGoogle Scholar
  9. 9.
    Dean M, Carrington M, Winkler C, et al(1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862PubMedCrossRefGoogle Scholar
  10. 10.
    Smith MW, Dean M, Carrington M, et al(1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:959–965PubMedCrossRefGoogle Scholar
  11. 11.
    Winkler C, Modi W, Smith MW, et al(1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279:389–393PubMedCrossRefGoogle Scholar
  12. 12.
    Migueles SA, Sabbaghian MS, Shupert WL, et al (2000) HLA B5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA 97:2709–2714PubMedCrossRefGoogle Scholar
  13. 13.
    Harrer T, Harrer E, Kalams SA, et al(1996) Cytotoxic T lymphocytes in asymptomatic long-term nonpro-gressing HIV-1 infection: breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 156:2616–2623PubMedGoogle Scholar
  14. 14.
    Lyles RH, Munoz A, Yamashita TE, et al(2000) Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. J Infect Dis 181:872–880PubMedCrossRefGoogle Scholar
  15. 15.
    Koup RA, Safrit JT, Cao Y, et al(1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655PubMedGoogle Scholar
  16. 16.
    Borrow P, Lewicki H., Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68:6103–6110PubMedGoogle Scholar
  17. 17.
    Pantaleo G, Demarest JF, Soudeyns H, et al(1994) Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370:463–467PubMedCrossRefGoogle Scholar
  18. 18.
    Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ (1997) Cytotoxic-T-cell responses, viral load, and disease progression in early human immunodeficiency virus type 1 infection. N Engl J Med 337:1267–1274PubMedCrossRefGoogle Scholar
  19. 19.
    Ogg GS, Jin X, Bonhoeffer S, et al(1998) Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279:2103–2106PubMedCrossRefGoogle Scholar
  20. 20.
    Riviere Y, McChesney MB, Porrot F, et al(1995) Gagspecific cytotoxic responses to HIV type 1 are associated with a decreased risk of progression to AIDS-related complex or AIDS. AIDS Res Hum Retroviruses 11:903–907PubMedCrossRefGoogle Scholar
  21. 21.
    Pontesilli O, Klein MR, Kerkhof-Garde SR, et al(1998) Longitudinal analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte responses: a predominant gag-specific response is associated with nonprogressive infection. J Infect Dis 178:1008–1018PubMedCrossRefGoogle Scholar
  22. 22.
    Pantaleo G, Graziosi C, Demarest JF, et al(1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358PubMedCrossRefGoogle Scholar
  23. 23.
    Pantaleo G, Cohen OJ, Schacker T, et al(1998) Evolutionary pattern of human immunodeficiency virus (HIV) replication and distribution in lymph nodes following primary infection: implications for antiviral therapy. Nat Med 4:341–345PubMedCrossRefGoogle Scholar
  24. 24.
    Pantaleo G, Cohen OJ, Graziosi C, et al (1997) Immunopathogenesis of human immunodeficiency virus infection. In: De Vita VTJ, Hellman S, Rosemberg SA (eds) AIDS. Lippincott Raven, Philadelphia, pp 78–88Google Scholar
  25. 25.
    Gea-Banacloche JC, Migueles SA, Martino L, et al (2000) Maintenance of large numbers of virus-specific D8+ T cells in HIV-infected progressors and longterm nonprogressors. J Immunol 165:1082–1092PubMedGoogle Scholar
  26. 26.
    Spira AI, Marx PA, Patterson BK, et al(1996) Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 183:215–225PubMedCrossRefGoogle Scholar
  27. 27.
    Cameron P, Pope M, Granelli-Piperno A, Steinman RM (1996) Dendritic cells and the replication of HIV-1. J Leukoc Biol 59:158–171PubMedGoogle Scholar
  28. 28.
    Zhu T, Mo H, Wang N, et al(1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu T, Wang N, Carr A, et al(1996) Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. J Virol 70:3098–3107PubMedGoogle Scholar
  30. 30.
    Klatzmann D, Champagne E, Chamaret S, et al(1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768PubMedCrossRefGoogle Scholar
  31. 31.
    Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348PubMedCrossRefGoogle Scholar
  32. 32.
    Zaitseva M, Blauvelt A, Lee S, et al(1997) Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med 3:1369–1375PubMedCrossRefGoogle Scholar
  33. 33.
    Chakrabarti L, Isola P, Cumont MC, et al(1994) Early stages of simian immunodeficiency virus infection in lymph nodes. Evidence for high viral load and successive populations of target cells. Am J Pathol 144:1226–1237PubMedGoogle Scholar
  34. 34.
    Graziosi C, Soudeyns H, Rizzardi GP, Bart PA, Chapuis A, Pantaleo G (1998) Immunopathogenesis of HIV infection. AIDS Res Hum Retroviruses 14 [Suppl]:S135–S142PubMedGoogle Scholar
  35. 35.
    Goulder PJR, Rowland-Jones SL, McMichael AJ, Walker BD (1999) Anti-HIV cellular immunity: recent advances towards vaccine design. AIDS 13:S121–S136PubMedGoogle Scholar
  36. 36.
    Yang 00, Kalams SA, Rosenzweig M, et al(1996) Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 70:5799–5806PubMedGoogle Scholar
  37. 37.
    Yang OO, Walker BD (1997) CD8+ cells in HIV pathogenesis: cytolytic and non-cytolytic inhibition of viral replication. Adv Immunol 66:273–311PubMedCrossRefGoogle Scholar
  38. 38.
    Cocchi F, DeVico AL, Garzino-Demo A, et al(1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815PubMedCrossRefGoogle Scholar
  39. 39.
    Mackewicz CE, Barker E, Levy JA (1996) Role of betachemokines in suppressing HIV replication [letter]. Science 274:1393–1395PubMedCrossRefGoogle Scholar
  40. 40.
    Yang 00, Kalams SA, Trocha A, et al(1997) Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 71:3120–3128PubMedGoogle Scholar
  41. 41.
    Altman JD, Moss PAH, Goulder PJR, et al(1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96PubMedCrossRefGoogle Scholar
  42. 42.
    Schmitz JE, Kuroda MJ, Santra S, et al(1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283:857–860PubMedCrossRefGoogle Scholar
  43. 43.
    Jin X, Bauer DE, Tuttleton SE, et al(1999) Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189:991–998PubMedCrossRefGoogle Scholar
  44. 44.
    Carmichael A, Jin X, Sissons P, et al(1993) Quantitative analysis of the human immunodeficiency virus type 1 (HlV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-i infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J Exp Med 177:249–256PubMedCrossRefGoogle Scholar
  45. 45.
    Klein MR, Van Baalen CA, Holwerda AM, et al(1995) Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-i infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med 181:1365–1372PubMedCrossRefGoogle Scholar
  46. 46.
    Rinaldo C, Huang X-L, Fan Z, et al(1995) High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J Virol 69:5838–5842PubMedGoogle Scholar
  47. 47.
    Miedema F, Meyaard L, Koot M, et al(1994) Changing virus-host interactions in the course of HIV-i infection. Immunol Rev 140:35–72PubMedCrossRefGoogle Scholar
  48. 48.
    Rosenberg ES, Billingsley JM, Caliendo AM, et al (1997) Vigorous HlV-1-specific CD4+ T cell responses associated with control of viremia. Science 278:1447–1450PubMedCrossRefGoogle Scholar
  49. 49.
    Oxenius A, Price DA, Easterbrook PJ, et al(2000) Early highly active antiretroviral therapy for acute HIV-i infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc Natl Acad Sci USA 97:3382–3387PubMedCrossRefGoogle Scholar
  50. 50.
    Malhotra U, Berrey MM, Huang Y, et al(2000) Effect of combination antiretroviral therapy on T-cell immunity in acute human immunodeficiency virus type 1 infection. J Infect Dis 181:121–131PubMedCrossRefGoogle Scholar
  51. 51.
    Rosenberg ES, Airfield M, Poon SH, et al(2000) Immune control of HIV-1 after early treatment of acute infection. Nature 407:523–526PubMedCrossRefGoogle Scholar
  52. 52.
    Kalams SA, Buchbinder SP, Rosenberg ES, et al(1999) Association between virus-specific cytotoxic T-lymphocyte and helper responses in human immunodeficiency virus type 1 infection. J Virol 73:6715–6720 53-Wagner L, Yang OO, Garcia-Zepeda EA, et al (1998) Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391:908-911PubMedGoogle Scholar
  53. 54.
    Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188:2199–2204PubMedCrossRefGoogle Scholar
  54. 55.
    Zajac AJ, Blattman JN, Murali-Krishna K, et al(1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 188:2205–22PubMedCrossRefGoogle Scholar
  55. 56.
    Goulder PJ, Altfeld MA, Rosenberg ES, et al(2001) Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J Exp Med 193:181–194PubMedCrossRefGoogle Scholar
  56. 57.
    Appay V, Nixon DF, Donahoe SM, et al(2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75PubMedCrossRefGoogle Scholar
  57. 58.
    Burton DR (1997) A vaccine for HIV type 1: the antibody perspective. Proc Natl Acad Sci USA 94:10018–10023PubMedCrossRefGoogle Scholar
  58. 59.
    Burton DR, Parren PW (2000) Vaccines and the induction of functional antibodies: time to look beyond the molecules of natural infection? Nat Med 6:123–125PubMedCrossRefGoogle Scholar
  59. 60.
    Poignard P, Sabbe R, Picchio GR, et al(1999) Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10:431–438PubMedCrossRefGoogle Scholar
  60. 61.
    Cao Y, Qin L, Zhang L, et al(1995) Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 332:201–208PubMedCrossRefGoogle Scholar
  61. 62.
    Baba TW, Liska V, Hofmann-Lehmann R, et al(2000) Human neutralizing monoclonal antibodies of the IgGi subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–206PubMedCrossRefGoogle Scholar
  62. 63.
    Harrer T, Harrer E, Kalams SA, et al(1996) Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection: breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 156:2616–2623PubMedGoogle Scholar
  63. 64.
    Rowland-Jones S, Sutton J, Ariyoshi K, et al(1995) HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med 1:59–64PubMedCrossRefGoogle Scholar
  64. 65.
    Kaul R, Plummer FA, Kimani J, et al(2000) HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol 164:1602–1611PubMedGoogle Scholar
  65. 66.
    Stranford SA, Skurnick J, Louria D, et al(1999) Lack of infection in HIV-exposed individuals is associated with a strong CD8(+) cell noncytotoxic anti-HIV response. Proc Natl Acad Sci USA 96:1030–1035PubMedCrossRefGoogle Scholar
  66. 67.
    Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 18:665–708PubMedCrossRefGoogle Scholar
  67. 68.
    Finzi D, Blankson J, Siliciano JD, et al(1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517PubMedCrossRefGoogle Scholar
  68. 69.
    Ramratnam B, Mittler JE, Zhang L, et al(2000) The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat Med 6:82–85PubMedCrossRefGoogle Scholar
  69. 70.
    Soudeyns H, Pantaleo G (1999) The moving target: mechanisms of HIV persistence during primary infection. Immunol Today 20:446–450PubMedCrossRefGoogle Scholar
  70. 71.
    Pantaleo G, Menzo S, Vaccarezza M, et al(1995) Analysis of the T-cell receptor beta-chain variable-region (V beta) repertoire in monozygotic twins discordant for human immunodeficiency virus: evidence for perturbations of specific V beta segments in CD4+ T cells of the virus-positive twins. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med 332:209–216PubMedCrossRefGoogle Scholar
  71. 72.
    Price DA, Goulder PJ, Klenerman P, et al(1997) Positive selection of HIV-i cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 94:1890–1895PubMedCrossRefGoogle Scholar
  72. 73.
    Collins KL, Chen BK, Kalams SA, et al(1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401PubMedCrossRefGoogle Scholar
  73. 74.
    Smith MW, Dean M, Carrington M, et al(1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-i infection and disease progression. Science 277:959–965PubMedCrossRefGoogle Scholar
  74. 75.
    Morawetz RA, Rizzardi GP, Glauser D, et al(1997) Genetic polymorphism of CCR5 gene and HIV disease: the heterozygous (CCR5/delta ccr5) genotype is neither essential nor sufficient for protection against disease progression. Swiss HIV Cohort. Eur J Immunol 27:3223–3227PubMedCrossRefGoogle Scholar
  75. 76.
    Paxton WA, Martin SR, Tse D, et al(1996) Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2:412–417PubMedCrossRefGoogle Scholar
  76. 77.
    Zagury D, Lachgar A, Chams V, et al(1998) C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci USA 95:3857–3861PubMedCrossRefGoogle Scholar
  77. 78.
    Ullum H, Cozzi Lepri A, Victor J, et al(1998) Production of beta-chemokines in human immunodeficiency virus (HIV) infection: evidence that high levels of macrophage inflammatory protein-1beta are associated with a decreased risk of HIV disease progression. J Infect Dis 177:331–336PubMedCrossRefGoogle Scholar
  78. 79.
    Pantaleo G, Demarest JF, Schacker T, et al(1997) The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc Natl Acad Sci USA 94:254–258PubMedCrossRefGoogle Scholar
  79. 80.
    Yang LP, Riley JL, Carroll RG, et al(1998) Productive infection of neonatal CD8+ T lymphocytes by HIV-1. J Exp Med 187:1139–1144PubMedCrossRefGoogle Scholar
  80. 81.
    Flamand L, Crowley RW, Lusso P, et al(1998) Activation of CD8+ T lymphocytes through the T cell receptor turns on CD4 gene expression: implications for HIV pathogenesis. Proc Natl Acad Sci USA 95: 3111–3116PubMedCrossRefGoogle Scholar
  81. 82.
    Giovannetti A, Pierdominici M, Mazzetta F, et al (2001) T cell responses to highly active antiretroviral therapy defined by chemokine receptors expression, cytokine production, T cell receptor repertoire and anti-HIV T-lymphocyte activity. Clin Exp Immunol 124:21–31PubMedCrossRefGoogle Scholar
  82. 83.
    Schuitemaker H, Koot M, Kootstra NA, et al(1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 66:1354–1360PubMedGoogle Scholar
  83. 84.
    Mellors JW, Munoz A, Giorgi JV, et al(1997) Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 126:946–954PubMedGoogle Scholar
  84. 85.
    Mezzaroma I, Carlesimo M, Pinter E, et al(1999) Clinical and immunological response without viral load decrease in patients with AIDS after 24 months of highly active antiretroviral therapy. Clin Infect Dis 29:1423–1430PubMedCrossRefGoogle Scholar
  85. 86.
    McCune JM (2001) The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410:974–979PubMedCrossRefGoogle Scholar
  86. 87.
    Isgrò A, Mezzaroma I, Aiuti A, et al(2000) Recovery of hematopoietic activity in bone marrow from human immunodeficiency virus type 1-infected patients during highly active antiretroviral therapy. AIDS Res Hum Retroviruses 16:1471–1479PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • Fernando Aiuti
  • Marco Marziali
  • Antonella Isgrò
  • Ivano Mezzaroma

There are no affiliations available

Personalised recommendations