Natural History of HIV Infection

  • Mauro Moroni
  • Stefano Rusconi
  • Agostino Riva


The human immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2) are human retroviruses that are associated with the acquired immunodeficiency syndrome (AIDS) [1].


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Chemokine Receptor Acquir Immune 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Essex ME (1997) Origin of the acquired immunodeficency syndrome. In: Devita VT Jr, Hellman S, Rosenberg SA (eds) AIDS: etiology, diagnosis, treatment and prevention. Lippincott Williams & Wilkins, Philadelphia, pp 3–14Google Scholar
  2. 2.
    Kuipe DM, Howley PM, Griffin DE (eds) (2001) Fields-Virology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  3. 3.
    Marlink RG, Ricard D, M’Boup S, et al(1988) Clinical hematologic and immunologic cross sectional evaluation of individuals exposed to human immunodeficiency virus type 2 (HIV-2). AIDS Res Hum Retroviruses 4:137–148PubMedCrossRefGoogle Scholar
  4. 4.
    Gonda MA, Braun MJ, Clements JE, et al(1986) Human T-cell lymphotropic virus type III shares sequence homology with a family of pathogenic lentiviruses. Proc Natl Acad Sci U S A 83:4007–4011PubMedCrossRefGoogle Scholar
  5. 5.
    Gonda MA, Wong-Staal F, Gallo RC, Chou MJ (1985) Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227:173–177PubMedCrossRefGoogle Scholar
  6. 6.
    Sonigo P, Alizon M, Staskus K, et al(1985) Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369–382PubMedCrossRefGoogle Scholar
  7. 7.
    Yu OC, Matsuda Z, Yu X, Ito S, Essex M, Lee T-H (1994) An electron-lucent region within the virion distinguishes HIV-1 from HIV-2 and simian immunodeficiency viruses. AIDS Res Hum Retroviruses 10:757–761PubMedCrossRefGoogle Scholar
  8. 8.
    Gelderblom HR (1991) Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5:617–638PubMedCrossRefGoogle Scholar
  9. 9.
    Marquet R, Baudin F, Gabus C, et al(1991) Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Res 19:2349–2357PubMedCrossRefGoogle Scholar
  10. 10.
    Ozel M, Pauli G, Gelderblom HR (1988) The organization of the envelope projections on the surface of HIV. Arch Virol 100:255–266PubMedCrossRefGoogle Scholar
  11. 11.
    Vaishnav YN, Wong-Staal F (1991) The biochemistry of AIDS. Ann Rev Biochem 60:577–630PubMedCrossRefGoogle Scholar
  12. 12.
    Weiss S, Koenig B, Mueller H-J, Seidel H, Goody RS (1992) Synthetic human tRNAlys3 and natural bovine tRNAlys3 interact with HIV-i reverse transcriptase and serve as specific primers for retroviral cDNA synthesis. Gene 111:183–197PubMedCrossRefGoogle Scholar
  13. 13.
    Hamburg MA, Koenig S, Fauci A (1990) Immunology of AIDS and HIV infection. In: Mandell GL, Douglas RG Jr, Bennet JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1046–1050Google Scholar
  14. 14.
    Fauci A (1988) The human immunodeficiency virus: infectivity and mechanism of pathogenesis. Science 239:617–622PubMedCrossRefGoogle Scholar
  15. 15.
    Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817PubMedCrossRefGoogle Scholar
  16. 16.
    Emerman M, Vazeux R, Peden K (1989) The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57:1155–1165PubMedCrossRefGoogle Scholar
  17. 17.
    Saag MS, Hahn BH, Gibbons J, et al(1988) Extensive variation of human immunodeficiency virus type1 in vivo. Nature 334:440–444PubMedCrossRefGoogle Scholar
  18. 18.
    Goodenow M, Huet T, Laurin W, et al(1989) HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitution. J AIDS 2:344–352Google Scholar
  19. 19.
    Desai SM, Kalyanaraman V, Casey JM, Srinivansan A, Andersen PR, Devare SG (1986) Molecular cloning and primary nucleotide sequence analysis of a distinct human immunodeficiency virus isolate reveal significant divergence in its genomic sequences. Proc Natl Acad Sci U S A 83:8380–8384PubMedCrossRefGoogle Scholar
  20. 20.
    Preston BD, Poisez B, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171PubMedCrossRefGoogle Scholar
  21. 21.
    Preston B (1997) Reverse transcriptase fidelity and HIV-i variation. Science 275:228–231PubMedCrossRefGoogle Scholar
  22. 22.
    Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173PubMedCrossRefGoogle Scholar
  23. 23.
    Gu Z, Gao Q, Faunt EA, Wainberg A (1995) Possible involvement of cell fusion and viral recombination in generation of human immunodeficiency virus variants that display dual resistance to AZT and 3TC. J Gen Virol 76:2601–2605PubMedCrossRefGoogle Scholar
  24. 24.
    Srinivasan A, York D, Yannoun-Nasr R, et al(1989) Generation of hybrid human immunodeficiency virus by homologous recombination. Proc Natl Acad Sci U S A 86:6388–6392PubMedCrossRefGoogle Scholar
  25. 25.
    Jurriaans S, Van Gehen B, Weverling GJ, et al(1994) The natural history of HIV-1 infection: viral load and phenotype independent determinant of clinical course? J Virol 204:223–233CrossRefGoogle Scholar
  26. 26.
    Fenyo EM, Morfeld-Manson L, Chiodi F, et al(1988) Distinct replicative and cytopathic characteristics of HIV isolates. J Virol 62:4414–4419PubMedGoogle Scholar
  27. 27.
    Kedzienski D (1995) Viral phenotype and genotype as markers in clinical trials. J AIDS 10:S25–S34Google Scholar
  28. 28.
    Connor RI, Mohri H, Cao Y, Ho DD (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T lymphocytes decline and clinical progression in human immunodeficiency virus type 1 infected individuals. J Virol 67:1772–1777PubMedGoogle Scholar
  29. 29.
    Dalgheish AG, Beverly P, Clapman PR, Crawford DH, Graves MF (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767CrossRefGoogle Scholar
  30. 30.
    Popovic M, Gartner S (1987) Isolation of HIV-1 from monocyte not T-lymphocytes. Lancet 11:916CrossRefGoogle Scholar
  31. 31.
    Tschachler E, Groh V, Popovic M (1987) Epidermal Langerhans cells—a target from HTLV-III/LAV infection. J Inv Derm 88:233–237CrossRefGoogle Scholar
  32. 32.
    Armstrong JA, Horne R (1984) Follicular dendritic cells and virus-like particles in AIDS-related lymphadenopathy. Lancet II:370–372CrossRefGoogle Scholar
  33. 33.
    Salahuddin SZ, Rose RM, Groopman JE, Markham PD, Gallo RC (1986) Human T lymphotropic virus type III infection of human alveolar macrophages. Blood 68:281–284PubMedGoogle Scholar
  34. 34.
    Pomerantz RJ, Kuritzkes D, DelaMonte S (1987) Infection of the retina by human immunodeficiency virus type 1. N Engl J Med 317:1643–1647PubMedCrossRefGoogle Scholar
  35. 35.
    Pomerantz RJ, De la Monte S, Dorngan SP (1988) Human immunodeficiency virus (HIV) infection of the uterine cervix. Ann Int Med 108:321–327PubMedGoogle Scholar
  36. 36.
    Koenig S, Gendelman HE, Orestein JM (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093PubMedCrossRefGoogle Scholar
  37. 37.
    Harouse JM, Bhat S (1991) Inhibition of entry of HIV-1 in neuronal cells lines by antibodies against galactosyl ceramide. Science 253:320–323PubMedCrossRefGoogle Scholar
  38. 38.
    Schuitemaker H, Koot M, Kootstra NA, et al(1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell tropic virus population. J Virol 66:1354–1360PubMedGoogle Scholar
  39. 39.
    Fenyo EM, Albert J, Asjo B (1989) Replicative capacity, cytopathic effect and cell tropism of HIV. AIDS 3:S5–S12PubMedCrossRefGoogle Scholar
  40. 40.
    Koot M, Keet IPM, Vos AVH, et al(1993) Prognostic value of human immunodeficiency virus type 1 biological phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Int Med 118:681–688PubMedGoogle Scholar
  41. 41.
    Tersmette M, Lange J, De Geode R, et al (1989) Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet L983-985Google Scholar
  42. 42.
    Deng H, Liu R, Ellmeier W, et al(1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 318:661–666CrossRefGoogle Scholar
  43. 43.
    Dragic T, Litvin V, Allaway GP, et al(1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR5. Nature 381:667–673PubMedCrossRefGoogle Scholar
  44. 44.
    Lusso P (2000) Chemokines and viruses: the dearest enemies. Virology 273:228–240PubMedCrossRefGoogle Scholar
  45. 45.
    Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700PubMedCrossRefGoogle Scholar
  46. 46.
    Valentin A, Albert J, Fenyo EM, Asio B (1994) Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J Virol 68:6684–6689PubMedGoogle Scholar
  47. 47.
    Tindall B, Cooper DA (1991) Primary HIV infection: host responses and intervention strategies. AIDS 5:1–14PubMedCrossRefGoogle Scholar
  48. 48.
    Clark SJ, Saag MS, Decker WD, et al(1991) High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. N Engl J Med 324:954–960PubMedCrossRefGoogle Scholar
  49. 49.
    Daar ES, Moudgil T, Meyer RD, et al(1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N Engl J Med 324:961–964PubMedCrossRefGoogle Scholar
  50. 50.
    Little SJ, McLean AR, Spina CA, et al(1999) Viral dynamics of acute HIV-1 infection. J Exp Med 190:841–850PubMedCrossRefGoogle Scholar
  51. 51.
    Fox R, Eldred LJ, Fuchs EJ, et al(1987) Clinical manifestations of acute infection with human immunodeficiency virus in a cohort of gay men. AIDS 1:35–38PubMedGoogle Scholar
  52. 52.
    Graziosi C, Pantaleo G, Butini L, et al(1993) Kinetics of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection. Proc Natl Acad Sci U S A 90:6405–6409PubMedCrossRefGoogle Scholar
  53. 53.
    Hoen B, Dumon B, Harzic M, et al(1999) Highly active antiretroviral treatment initiated early in the course of symptomatic primary HIV-1 infection: results of the ANRS 053 trial. J Infect Dis 180:1342–1346PubMedCrossRefGoogle Scholar
  54. 54.
    Koup RA, Safrit JT, Cao Y, et al(1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655PubMedGoogle Scholar
  55. 55.
    Pantaleo G, Demarest JF, Soudeyns H, et al(1994) Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370:463–467PubMedCrossRefGoogle Scholar
  56. 56.
    Pehrson P, Lindback S, Lidman C, et al(1997) Longer survival after HIV infection for injecting drug users than for homosexual men: implications for immunology. AIDS 11:1007–1012PubMedCrossRefGoogle Scholar
  57. 57.
    Pezzotti P, Galai N, Vlahov D, et al(1999) Direct comparison of time to AIDS and infectious disease death between HIV seroconverter injection drug users in Italy and the United States: results from the ALIVE and ISS studies. J Acquir Immune Defic Syndr Hum Retrovirol 20:275–282PubMedCrossRefGoogle Scholar
  58. 58.
    Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action (2000) Time from HIV-i seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 355:1131–1137CrossRefGoogle Scholar
  59. 59.
    Veugelers PJ, Page KA, Tindall B, et al(1994) Determinants of HIV disease progression among homosexual men registered in the Tricontinental Seroconverter Study. Am J Epidemiol 140:747–758PubMedGoogle Scholar
  60. @@@60.
    UK Register of HIV Seroconverters Steering Committee (1998) The AIDS incubation period in the UK estimated from a national register of HIV seroconverters. AIDS 12:659–667Google Scholar
  61. 61.
    Van Benthem BH, Veugelers PJ, Cornelisse PG, et al (1998) Is AIDS a floating point between HIV seroconversion and death? Insights from the Tricontinental Seroconverter Study. AIDS 12:1039–1045PubMedCrossRefGoogle Scholar
  62. 62.
    Haynes BF (1997) Immune responses to HIV infection. In: Devita VT Jr, Hellman S, Rosenberg SA (eds) AIDS: etiology, diagnosis, treatment and prevention. Lippin-cott Williams & Wilkins. Philadelphia, pp 89–99Google Scholar
  63. 63.
    Pantaleo G, Graziosi C, Demarest JF, et al(1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362:355–358PubMedCrossRefGoogle Scholar
  64. 64.
    Wei X, Ghosh SK, Taylor ME, et al(1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122PubMedCrossRefGoogle Scholar
  65. 65.
    Embretson J, Zupancic M, Ribas JL, et al(1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362PubMedCrossRefGoogle Scholar
  66. 66.
    Fox CH, Tenner-Racz K, Racz P, et al(1991) Lymphoid germinal centers are reservoirs of human immunodeficiency virus type 1 RNA. J Infect Dis 164:1051–1057PubMedCrossRefGoogle Scholar
  67. 67.
    Spiegel H, Herbst H, Niedobitek G, et al(1992) Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol. 140:15–PubMedGoogle Scholar
  68. 68.
    Bird AG (1992) Clinical and immunological assessment of HIV infection. J Clin Pathol 45:850–854 69. Fauci AS, Lane HC (2001) Human immunodeficiency virus (HIV) disease: AIDS and related disorders. In: Braunwald E, Fauci AS, Kasper DL, et al (eds) Harrison’s principles of internal medicine, vol 2. McGraw-Hill, New York, pp 1852-1913PubMedCrossRefGoogle Scholar
  69. 70.
    Pantaleo G, Graziosi C, Demarest JF, et al(1994) Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev 140:105–130PubMedCrossRefGoogle Scholar
  70. 71.
    Raska K Jr, Kim HC, Raska K 3rd, et al(1989) Human immunodeficiency virus (HIV) infection in haemophiliacs: long-term prognostic significance of the HIV serologic pattern. Clin Exp Immunol 77:1–6PubMedGoogle Scholar
  71. 72.
    Janvier B, Mallet F, Cheynet V, et al(1993) Prevalence and persistence of antibody titers to recombinant HIV-1 core and matrix proteins in HIV-1 infection. J Acquir Immune Defic Syndr 6:898–903PubMedGoogle Scholar
  72. 73.
    Kozlowski PA, Chen D, Eldridge JH, et al(1994) Contrasting IgA and IgG neutralization capacities and responses to HIV type 1 gpi20 V3 loop in HIV-infected individuals. AIDS Res Hum Retroviruses 10:813–822PubMedGoogle Scholar
  73. 74.
    Cavacini LA, Ernes CL, Power J, et al(1993) Loss of serum antibodies to a conformational epitope of HIV-1/gp120 identified by a human monoclonal antibody is associated with disease progression. J Acquir Immune Defic Syndr 6:1093–1102PubMedGoogle Scholar
  74. 75.
    Mackewicz CE, Ortega HW, Levy JA (1991) CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest 87:1462–1466PubMedCrossRefGoogle Scholar
  75. 76.
    Landay AL, Mackewicz CE, Levy JA (1993) An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status. Clin Immunol Immunopathol 69:106–116PubMedCrossRefGoogle Scholar
  76. 77.
    Gupta P, Kingsley L, Armstrong J, et al(1993) Enhanced expression of human immunodeficiency virus type 1 correlates with development of AIDS. Virology 196:586–595PubMedCrossRefGoogle Scholar
  77. 78.
    Schnittman SM, Greenhouse JJ, Lane HC, et al(1991) Frequent detection of HIV-1-specific mRNAs in infected individuals suggests ongoing active viral expression in all stages of disease. AIDS Res Hum Retroviruses 7:361–367PubMedCrossRefGoogle Scholar
  78. 79.
    Seshamma T, Bagasra O, Trono D, et al(1992) Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 89:10663–10667PubMedCrossRefGoogle Scholar
  79. 80.
    Arens M, Joseph T, Nag S, et al(1993) Alterations in spliced and unspliced HIV-i-specific RNA detection in peripheral blood mononuclear cells of individuals with varying CD4-positive lymphocyte counts. AIDS Res Hum Retroviruses 9:1257–1263PubMedCrossRefGoogle Scholar
  80. 81.
    Saksela K, Stevens CE, Rubinstein P, et al(1995) HIV-1 messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med 123:641–648PubMedGoogle Scholar
  81. 82.
    Delwart EL, Sheppard HW, Walker BD, et al(1994) Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J Virol 68:6672–6683PubMedGoogle Scholar
  82. 83.
    Levy JA (1993) HIV pathogenesis and long-term survival. AIDS 7:1401–1410PubMedCrossRefGoogle Scholar
  83. 84.
    Ashton LJ, Carr A, Cunningham PH, et al(1998) Predictors of progression in long-term nonprogressors. Australian Long-Term Nonprogressor Study Group. AIDS Res Hum Retroviruses 14:117–121PubMedCrossRefGoogle Scholar
  84. 85.
    Soriano V, Martin R, del Romero J, et al(1997) Outcome in a cohort of long-term non-progressors in Madrid: virological and immunological findings. AIDS 11:123–124PubMedGoogle Scholar
  85. 86.
    Petrucci A, Dorrucci M, Alliegro MB, et al(1997) How many HIV-infected individuals may be defined as long-term nonprogressors? A report from the Italian Seroconversion Study. Italian Seroconversion Study Group (ISS) J Acquir Immune Defic Syndr Hum Retrovirol 14:243–248CrossRefGoogle Scholar
  86. 87.
    Kirchhoff F, Greenough TC, Brettler DB, et al(1995) Brief report: absence of intact nef sequences in a longterm survivor with nonprogressive HIV-1 infection. N Engl J Med 332:228–232PubMedCrossRefGoogle Scholar
  87. 88.
    Blaak H, Brouwer M, Ran LJ, et al(1998) In vitro replication kinetics of human immunodeficiency virus type 1 (HIV-1) variants in relation to virus load in long-term survivors of HIV-1 infection. J Infect Dis 177:600–610PubMedCrossRefGoogle Scholar
  88. 89.
    Menzo S, Sampaolesi R, Vicenzi E, et al(1998) Rare mutations in a domain crucial for V3-loop structure prevail in replicating HIV from long-term non-progressors. AIDS 12:985–997PubMedCrossRefGoogle Scholar
  89. 90.
    Riva C, Violin P, Bagnarelli P, et al (1997) Analysis of the V1-V5 env region in HIV-1 long-term nonprogressord and typical progressors. J Acquir Immune Defic Syndr Hum Retrovirol 15:S72–S77Google Scholar
  90. 91.
    Cao Y, Qin L, Zhang L, et al(1995) Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. N Engl J Med 332:201–208PubMedCrossRefGoogle Scholar
  91. 92.
    Hogervorst E, Jurriaans S, de Wolf F, et al(1995) Predictors for non-and slow progression in human immunodeficiency virus (HIV) type 1 infection: low viral RNA copy numbers in serum and maintenance of high HIV-1 p24-specific but not V3-specific antibody levels. Infect Dis 171:811–821CrossRefGoogle Scholar
  92. 93.
    Montefiori DC, Pantaleo G, Fink LM, et al(1996) Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in longterm nonprogressors. J Infect Dis 173:60–67PubMedCrossRefGoogle Scholar
  93. 94.
    Carotenuto P, Looij D, Keldermans L, et al(1998) Neutralizing antibodies are positively associated with CD4+ T-cell counts and T-cell function in long-term AIDS-free infection. AIDS 12:1591–1600PubMedCrossRefGoogle Scholar
  94. 95.
    Rusconi S, Riva A, Meroni L, et al(1995) In vitro anti-HIV-1 antibody production in subjects in different stages of HIV-1 infection. Clin Exp Immunol 102:26–30PubMedCrossRefGoogle Scholar
  95. 96.
    Rusconi S, Berlusconi A, Papagno L, et al(1997) Patterns of in vitro anti-human immunodeficiency virus type 1 antibody production in long-term nonprogressors. Clin Immunol Immunopathol 85:320–323PubMedCrossRefGoogle Scholar
  96. 97.
    Rosenberg ES, Billingsley JM, Caliendo AM, et al (1997) Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278:1447–1450PubMedCrossRefGoogle Scholar
  97. 98.
    Clerici M, Balotta C, Meroni L, et al(1996) Type 1 cytokine production and low prevalence of viral isolation correlate with long-term nonprogression in HIV infection. AIDS Res Hum Retroviruses 12:1053–1061PubMedCrossRefGoogle Scholar
  98. 99.
    Harrer T, Harrer E, Kalams SA, et al(1996) Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses 12:585–592PubMedCrossRefGoogle Scholar
  99. 100.
    Harrer T, Harrer E, Kalams SA, et al(1996) Cytotoxic T lymphocytes in asymptomatic long-term nonpro-gressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J Immunol 156:2616–2623PubMedGoogle Scholar
  100. 101.
    Scala E, D’Offizi G, Rosso R, et al(1997) C-C chemokines, IL-16, and soluble antiviral factor activity are increased in cloned T cells from subjects with long-term nonprogressive HIV infection. J Immunol 158:4485–4492PubMedGoogle Scholar
  101. 102.
    Barker E, Mackewicz CE, Reyes-Teran G, et al(1998) Virological and immunological features of long-term human immunodeficiency virus-infected individuals who have remained asymptomatic compared with those who have progressed to acquired immunodeficiency syndrome. Blood 92:3105–3114PubMedGoogle Scholar
  102. 103.
    Dean M, Carrington M, Winkler C, et al(1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273:1856–1862PubMedCrossRefGoogle Scholar
  103. 104.
    Cohen OJ, Vaccarezza M, Lam GK, et al(1997) Heterozygosity for a defective gene for CC chemokine receptor 5 is not the sole determinant for the immunologic and virologic phenotype of HIV-infected long-term nonprogressors. J Clin Invest 100:1581–1589PubMedCrossRefGoogle Scholar
  104. 105.
    Eugen-Olsen J, Iversen AK, Garred P, et al(1997) Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS 11:305–310PubMedCrossRefGoogle Scholar
  105. 106.
    Stewart GJ, Ashton LJ, Biti RA, et al(1997) Increased frequency of CCR-5 delta 32 heterozygotes among long-term non-progressors with HIV-i infection. The Australian Long-Term Non-Progressor Study Group. AIDS 11:1833–1838PubMedCrossRefGoogle Scholar
  106. 107.
    Michael NL, Chang G, Louie LG, et al(1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med 3:338–340PubMedCrossRefGoogle Scholar
  107. 108.
    Rizzardi GP, Morawetz RA, Vicenzi E, et al(1998) CCR2 polymorphism and HIV disease. Swiss HIV Cohort. Nat Med 4:252–253PubMedCrossRefGoogle Scholar
  108. 109.
    McDermott DH, Zimmerman PA, Guignard F, et al (1998) CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352:866–870PubMedCrossRefGoogle Scholar
  109. 110.
    Winkler C, Modi W, Smith MW, et al(1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279:389–393PubMedCrossRefGoogle Scholar
  110. 111.
    Magierowska M, Theodorou I, Debre P, et al(1999) Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the long-term nonprogressor status in human immunodeficiency virus-1-infected individuals. Blood 93:936–941 112. UNAIDS/WHO (2001) AIDS epidemic update: December 2001. Joint United Nations Programme on HIV/AIDS (UNAIDS), World Health Organization, GenevaPubMedGoogle Scholar
  111. 113.
    Colebunders R, Ryder R, Francis H, et al(1991) Seroconversion rate, mortality, and clinical manifestations associated with the receipt of a human immunodeficiency virus-infected blood transfusion in Kinshasa, Zaire. J Infect Dis 164:450–456PubMedCrossRefGoogle Scholar
  112. 114.
    N’Galy B, Ryder RW, Bila K, et al(1988) Human immunodeficiency virus infection among employees in an African hospital. N Engl J Med 319:1123–1127PubMedCrossRefGoogle Scholar
  113. 115.
    Whittle H, Egboga A, Todd J, et al(1992) Clinical and laboratory predictors of survival in Gambian patients with symptomatic HIV-1 or HIV-2 infection. AIDS 6:685–689PubMedCrossRefGoogle Scholar
  114. 116.
    Bentwich Z, Kalinkovich A, Weisman Z (1995) Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today 16:187–191PubMedCrossRefGoogle Scholar
  115. 117.
    Rizzardini G, Trabattoni D, Saresella M, et al(1998) Immune activation in HIV-infected African individuals. Italian-Ugandan AIDS cooperation program. AIDS 12:2387–2396PubMedCrossRefGoogle Scholar
  116. 118.
    Fox JG, Beck P, Dangler CA, et al(2000) Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric atrophy. Nat Med 6:536–542PubMedCrossRefGoogle Scholar
  117. 119.
    Folks TM, Clouse KA, Justement J, et al(1989) Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A 86:2365–2368PubMedCrossRefGoogle Scholar
  118. 120.
    Bleul CC, Wu L, Hoxie JA, Springer TA, et al(1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A 94:1925–1930PubMedCrossRefGoogle Scholar
  119. 121.
    Marlink R, Kanki P, Thior I, et al(1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590PubMedCrossRefGoogle Scholar
  120. 122.
    Leroy V, Msellati P, Lepage P, et al(1995) Four years of natural history of HIV-1 infection in African women: a prospective cohort study in Kigali (Rwanda), 1988-1993. J Acquir Immune Defic Syndr Hum Retro virol 9:415–421Google Scholar
  121. 123.
    French N, Mujugira A, Nakiyingi J, et al(1999) Immunologic and clinical stages in HIV-1-infected Ugandan adults are comparable and provide no evidence of rapid progression but poor survival with advanced disease. J Acquir Immune Defic Syndr 22:509–516PubMedGoogle Scholar
  122. 124.
    Morgan D, Whitworth J (2001) The natural history of HIV-i infection in Africa. Nat Med 7:143–145PubMedCrossRefGoogle Scholar
  123. 125.
    Morgan D, Mahe C, Mayanja B, et al(2002) Progression to symptomatic disease in people infected with HIV-1 in rural Uganda: prospective cohort study. BMJ 324:193–196PubMedCrossRefGoogle Scholar
  124. 126.
    Anzala OA, Nagelkerke NJ, Bwayo JJ, et al(1995) Rapid progression to disease in African sex workers with human immunodeficiency virus type 1 infection. J Infect Dis 171:686–689PubMedCrossRefGoogle Scholar
  125. 127.
    Morgan D, Mahe C, Mayanja B, et al(2002) HIV-1 infection in rural Africa: is there a difference in median time to AIDS and survival compared with that in industrialized countries? AIDS 16:597–603PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • Mauro Moroni
  • Stefano Rusconi
  • Agostino Riva

There are no affiliations available

Personalised recommendations