Latest Advances and Trends in PCR-Based Diagnostic Methods

  • Alexandre J. da Silva
  • Norman J. Pieniazek


The implementation of molecular biology techniques has facilitated the discovery of new genetic markers and the evaluation of genes previously known. Some of these new techniques have been used with great success in the identification of microbes from a variety of sources of clinical specimens, including body fluids (e.g., blood, urine, CSF), solid tissues, and stools. Molecular-based methods can be used to confirm results obtained by traditional nonmolecular diagnostic methods (e.g., microscopic) in a very unique way and such techniques are evolving to offer an alternative to biologic amplification by in vivo or in vitro cultivation. This new technology will have a positive impact on the management of patient care in the diagnosis of diseases caused by fastidious microorganisms that cannot be identified in the absence of biological amplification processes. The specificity and sensitivity of molecular methods are the essence of this optimistic scenario, since certain molecular approaches may allow the detection of a few or even one microorganism in a specimen, a task that cannot be easily achieved by using most of the traditional laboratory nonmolecular techniques in the diagnosis of infectious diseases.


Polymerase Chain Reaction Polymerase Chain Reaction Amplification Polymerase Chain Reaction Reaction Fluorescence Resonance Energy Transfer Polymerase Chain Reaction Primer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tang WY, Persing DH (1999) Molecular detection and identification of microorganisms. In: Murray P, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology, Washington DC, pp 215–244Google Scholar
  2. 2.
    Wu DY, Wallace RB (1989) The ligation amplification reaction (LAR)-amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4:560–569PubMedCrossRefGoogle Scholar
  3. 3.
    Barany F (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA 88:189–193PubMedCrossRefGoogle Scholar
  4. 4.
    Relman DA, Persing DH (1996) Genotypic methods for microbial identification. In: Persing DH (ed) PCR Protocols for emerging infectious diseases. ASM Press, Washington DCGoogle Scholar
  5. 5.
    Saiki RK, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of ß-glo-bin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  6. 6.
    Mullis KB (1990) The unusual origin of the polymerase chain reaction. Scientific American 262:56–65PubMedCrossRefGoogle Scholar
  7. 7.
    Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research 24:3546–3551PubMedCrossRefGoogle Scholar
  8. 8.
    de Noronha CM, Mullins JI (1992) Amplimers with 3’-terminal phosphorothioate linkages resist degradation by vent polymerase and reduce Taq polymerase mispriming. PCR Method Applic 2:131–136CrossRefGoogle Scholar
  9. 9.
    Innis MA, Gelfand DH (1990) Optimization of PCRs. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 3–12Google Scholar
  10. 10.
    Sharrocks AD (1994) The design of primers for PCR. In: Griffin HG, Griffin AM (eds) PCR technology current innovations. CRC Press, Boca Raton, pp 5–11Google Scholar
  11. 11.
    Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol 27:1787–1792PubMedGoogle Scholar
  12. 12.
    Bregtane S, Costa J-M, Vidaud M, van Nhieu J-M, Fleury-Feith J (1993) Detection of Toxoplasma gondii by competitive DNA amplification of bronchoalveo-lar lavage samples. J Infect Dis 168:1585–1588CrossRefGoogle Scholar
  13. 13.
    Bregtane S, Costa J-M, Fleury-Feith J, Poron F, Dubreuil-Lemaire M-L, Vidaud M (1995) Quantitative competitive PCR with bronchoalveolar lavage fluid for diagnosis of toxoplasmosis in AIDS patients. J Clin Microbiol 33:1662–1664Google Scholar
  14. 14.
    Ellis JT (1998) Polymerase chain reaction approaches for the detection ofNeospora caninum and Toxoplasma gondii. Intern J Parasitol 28:1053–1069CrossRefGoogle Scholar
  15. 15.
    Kupferschmidt O, Krüger D, Held TK, Ellerbrok H, Siegert W, Janitschke K (2001) Quantitative detection of Toxoplasma gondii DNA in human body fluids by TaqMan Polymerase chain reaction. Clin Microbiol Infect 7:120–124PubMedCrossRefGoogle Scholar
  16. 16.
    Brooks EM, Sheflin LG, Spaulding SW (1995) Secondary structure in the 3’ UTR of EGF and the choice of reverse transcriptases affect the detection of message diversity by RT-PCR. Biotechniques 19:806–815PubMedGoogle Scholar
  17. 17.
    Myers TW, Gelfand DH (1991) Reverse transcription and DNA amplification by a Thermus thermofilus DNA polymerase. Biochemistry 30:7661–7666PubMedCrossRefGoogle Scholar
  18. 18.
    Young KK, Resnick RM, Myers TW (1993) Detection of hepatitis C virus RNA by a combined reverse transcription-polymerase chain reaction assay. J Clin Microbiol 31:882–886PubMedGoogle Scholar
  19. 19.
    Haqqi TM, Sarkar G, David CS, Sommer SS (1988) Specific amplification with PCR of a refractory segment of genomic DNA. Nucleic Acids Res 16:1184CrossRefGoogle Scholar
  20. 20.
    Katzwinkel-Wladarsch S, Lieb M, Heise W, Loscher T, Rinder H (1996) Direct amplification and species determination of microsporidian DNA from stool specimens. Trop Med Int Health 1:373–378PubMedCrossRefGoogle Scholar
  21. 21.
    Kock NP, Petersen H, Fenner T, Sobottka I, Schmetz C, Deplazes P, Pieniazek NJ, Albrecht H, Schottelius J (1997) Species-specific identification of microsporidia in stool and intestinal biopsy specimens by the poly-merase chain reaction. Eur J Clinical Microbiol Infect Dis 16:369–376CrossRefGoogle Scholar
  22. 22.
    Gouveia V (1993) PCR detection of rotavirus. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and appli-cations. American Society for Microbiology, Washington DC, pp 383–388Google Scholar
  23. 23.
    Queiroz APS, Santos FM, Sassaroli A, Harsi CM, Monezi TA, Mehnert DU (2001) Electropositive filter membranes as an alternative for the elimination of PCR inhibitors from sewage and water samples. Appl Environ Microbiol 67:4614–4618PubMedCrossRefGoogle Scholar
  24. 24.
    Evangelopoulos A, Spanakos G, Patsoula E, Vakalis N, Legakis N (2000) A nested, multiplex, PCR assay for the differentiation of Entamoeba histolytica and Entamoeba dispar. Ann Trop Med Parasitol 94:233–240PubMedCrossRefGoogle Scholar
  25. 25.
    Bej AK, Mahbubani MH, Miller R, DiCesare JL, Haff L, Atlas RM (1990) Multiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes 4:353–365PubMedCrossRefGoogle Scholar
  26. 26.
    Mahbubani MH, Bej AK (1994) Applications of polymerase chain reaction methodology in clinical diagnostics. In: Griffin HG, Griffin AM (eds) PCR technol-ogy: current innovations. CRC Press, Boca Raton, pp 308–324Google Scholar
  27. 27.
    Nunez YO, Fernandez MA, Torres-Nunez D, Silva JA, Montano, Maestre JL, Fönte L (2001) Multiplex polymerase chain reaction amplification and differentia-tion of Entamoeba histolytica and Entamoeba dispar DNA from stool samples. Am J Trop Med Hyg 64:293–297PubMedGoogle Scholar
  28. 28.
    Valle PR, Souza MBG, Pires EM, Silva EF, Gomes MA (2000) Arbitrarily primed PCR fingerprinting of RNA and DNA in Entamoeba histolytica. Revista do Instituto de Medicina Tropical de Säo Paulo 42:249–253PubMedCrossRefGoogle Scholar
  29. 29.
    Yu K, Pauls PK (1994) Optimization of DNA extrac-tion and PCR procedures for random amplified polymorphic DNA (RAPD) analysis in plants. In: Griffin HG, Griffin AM (eds) PCR technology: current innovations. CRC Press, Boca Raton, pp 193–200Google Scholar
  30. 30.
    Amar CFL, Dear PH, Pedraza-Diaz S, Looker N, Linnane E, McLauchlin J (2002) Sensitive PCR-restriction fragment length polymorphism assay for detection and genotyping of Giardia duodenalis in human feces. J Clin Microbiol 40:446–452PubMedCrossRefGoogle Scholar
  31. 31.
    Swaminathan B, Matar GM (1993) Molecular typing methods. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington DC, pp 26-50Google Scholar
  32. 32.
    Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, Thompson RC, Fayer R, Lai AA (1999) Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol 65:3386–3391PubMedGoogle Scholar
  33. 33.
    Yap EPH, Lo Y-MO, Fleming KA, McGee JOD (1994) False-positives and contamination in PCR. In: Griffin HG, Griffin AM (eds) PCR technology. Current inno-vations. CRC Press, Boca Raton, pp 249–258Google Scholar
  34. 34.
    Deragon J-M, Sinnett D, Mitchell G, Potier M, Labuda D (1990) Use of gamma irradiation to eliminate DNA contamination for PCR. Nucleic Acids Res 18:6149PubMedCrossRefGoogle Scholar
  35. 35.
    Sarkar G, Sommer SS (1990) Shedding light on PCR contamination. Nature 343:27PubMedCrossRefGoogle Scholar
  36. 36.
    Ou C-Y, Moore JL, Schochetman G (1991) Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 10:442–444PubMedGoogle Scholar
  37. 37.
    Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125PubMedCrossRefGoogle Scholar
  38. 38.
    Espy MJ, Smith TF, Persing DH (1993) Dependence of polymerase chain reaction product inactivation pro-tocols on amplicon length and sequence composition. J Clin Microbiol 31:2361–2365PubMedGoogle Scholar
  39. 39.
    Greer CE, Lund JK, Manos MM (1991) PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospec-tive studies. PCR Method Applic 1:46–50CrossRefGoogle Scholar
  40. 40.
    Greer CE, Peterson SL, Kiviat NB, Manos MM (1991) PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Pathol 95:117–124PubMedGoogle Scholar
  41. 41.
    Shedlock AM, Haygood MG, Pietsch TW, Bentzen P (1997) Enhanced DNA extraction and PCR amplifica-tion of mitochondrial genes from formalin-fixed museum specimens. Biotechniques 22:394–400PubMedGoogle Scholar
  42. 42.
    Bornay-Llinares FJ, da Silva AJ, Moura H, Schwartz DA, Visvesvara GS, Pieniazek NJ, Cruz-Lopez A, Hernändez-Jauregui P, Guerrero J, Enriquez FJ (1998) Immunologic, microscopic, and molecular evidence of Encephalitozoon intestinalis (Septata intestinalis) infection in mammals other than humans. J Infect Dis 178:820–826PubMedCrossRefGoogle Scholar
  43. 43.
    da Silva AJ, Bornay-Llinares FJ, del Aguila-de la Puente C, Moura H, Peralta JM, Sobottka I, Schwartz DA, Visvesvara GS, Slemenda SB, Pieniazek NJ (1997) Diagnosis of Enterocytozoon bieneusi (Microsporidia) infections by polymerase chain reaction in stool sam-ples using primers based on the region coding for the small-subunit ribosomal RNA. Arch Pathol Lab Med 121:874–879PubMedGoogle Scholar
  44. 44.
    Ortega YR, Sterling CR, Gilman RH, Cama VA, Diaz F (1993) Cyclospora species—a new protozoan pathogen of humans. N Engl J Med 328:1308–1312PubMedCrossRefGoogle Scholar
  45. 45.
    Eberhard ML, Pieniazek NJ, Arrowood MJ (1997) Laboratory diagnosis of Cyclospora infections. Arch Pathol Lab Med 121:792–797PubMedGoogle Scholar
  46. 46.
    Smith HV, Paton CA, Mtambo MM, Girdwood RWA (1997) Sporulation of Cyclospora sp. oocysts. Appl Environ Microbiol 63:1631–1632PubMedGoogle Scholar
  47. 47.
    da Silva AJ, Bornay-Llinares FJ, Moura IN, Slemenda SB, Tuttle JL, Pieniazek NJ (1999) Fast and reliable extraction of protozoan parasite DNA from fecal specimens. Mol Diagn 4:57–64PubMedCrossRefGoogle Scholar
  48. 48.
    Monteiro L, Bonneimason D, Verkis A, Petry KG, Bonnet J, Vidal R, Cabrita J, Megraud F (1997) Complex polysaccharides as PCR inhibitors in feces: Heli-cobater pylori model. J Clin Microbiol 35:995–998PubMedGoogle Scholar
  49. 49.
    Brian MJ, Frosolono M, Murray BE, Miranda A, Lopez EL, Gomez HF, Geary TG (1992) Polymerase chain reaction for diagnosis of enterohemorrhagic Escherichia coli infection and hemolytic-uremic syndrome. J Clin Microbiol 30:1801–1806PubMedGoogle Scholar
  50. 50.
    Novati S, Sironi M, Granata S, Bruno A, Gatti S, Scaglia M (1996) Direct sequencing of the PCR amplified SSU rRNA gene of Entamoeba dispar and the design of primers for rapid differentiation from Enta-moeba histolytica. Parasitology 112:363–369PubMedCrossRefGoogle Scholar
  51. 51.
    Carville AK, Mansfield K, Widmer G, Lackner A, Kotler D, Wiest P, Gumbo T, Sarbah S, Tzipori S (1997) Development and applications of genetic probes for detection of Enterocytozoon bieneusi in formalin-fixed stools and in intestinal biopsies of infected patients. Clin Diagn Lab Immunol 4:405–408PubMedGoogle Scholar
  52. 52.
    de Lamballeire X, Zandotti C, Vignoli C, Bollet C, de Micco P (1992) A one-step microbial DNA extraction using “Chelex 100” suitable for gene amplification. Res Microbiol 143:785–790CrossRefGoogle Scholar
  53. 53.
    Islam D, Lindberg AA (1992) Detection of Shigella dysenteriae type 1 and Shigella flexneri in feces by immuno-magnetic isolation and polymerase chain reaction. J Clin Microbiol 30:2801–2806PubMedGoogle Scholar
  54. 54.
    Fedorko DP, Nelson NA, Cartwright CP (1995) Identification of microsporidia in stool specimens by using PCR and restriction endonucleases. J Clin Microbiol 33:1739–i741PubMedGoogle Scholar
  55. 55.
    Ombrouck C, Ciceron L, Biligui S, Brown S, Marechal P, van Gool T, Dairy A, Danis M, Desportes-Livage I (1997) Specific assay for direct detection of intestinal microsporidia Enterocytozoon bieneusi and Encephalitozoon intestinalis in fecal specimens from human immunodeficiency virus-infected patients. J Clin Microbiol 35:653–655Google Scholar
  56. 56.
    Schreier E, Döring F, Kunkel U (2000) Molecular epidemiology of outbreaks of gastroenteritis associated with small round structured viruses in Germany in 1997/98. Arch Virol 145:443–453PubMedCrossRefGoogle Scholar
  57. 57.
    Eberhard ML, da Silva AJ, Lilley BG, Pieniazek NJ (1999) Morphologic and molecular characterization of new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp. n., C. colobi sp. n., and C. papionis sp. n. Emerg Infect Dis 5:651–658PubMedCrossRefGoogle Scholar
  58. 58.
    McLauchlin J, Pedraza-Diaz S, Amar-Hoetzeneder C, Nichols GL (1999) The genetic characterization of Cryptosporidium strains from 218 patients diagnosed as having sporadic cryptosporidiosis. J Clin Microbiol 37:3153–3158PubMedGoogle Scholar
  59. 59.
    Orlandi PA, Lampel KA (2000) Extraction-free, filter-based template preparation for rapid and sensitive detection of pathogenic parasitic protozoa. Appl Environ Microbiol 38:2271–2277Google Scholar
  60. 60.
    Lopez A, Dodson DR, Arrowood MJ, Orlandi PA, da Silva AJ, Bier JW, Hanauer SD, Küster RL, Oltman S, Baldwin MS, Won KY, Nace EM, Eberhard ML, Herwaldt BL (2001) Outbreak of cyclosporiasis associated with basil in Missouri in 1999. Clin Infect Dis 32:1010–1017PubMedCrossRefGoogle Scholar
  61. 61.
    Amar C, Pedraza-Diaz S, McLauchlin J (2001) Extraction and genotyping of Cryptosporidium parvum DNA from fecal smears on glass slides stained conventionally for direct microscope examination. J Clin Microbiol 39:401–403PubMedCrossRefGoogle Scholar
  62. 62.
    Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction. J Molec Endocrinol 25:169–193CrossRefGoogle Scholar
  63. 63.
    Cockerill FR, Smith TF (2002) Rapid-cycle real-time PCR: a revolution for clinical microbiology. ASM News 68:77–83Google Scholar
  64. 64.
    Morrison TB, Weiss JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotech-niques 24:954–962Google Scholar
  65. 65.
    Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis CJ (1997) The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22:176–181PubMedGoogle Scholar
  66. 66.
    Holland PM, Abramson RD, Watson R, H. GD (1991) Detection of specific polymerase chain reaction prod-uct by utilizing the 5>-3>exonuclease activity of Ther-mus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280PubMedCrossRefGoogle Scholar
  67. 67.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308PubMedCrossRefGoogle Scholar
  68. 68.
    Harder TC, Hufnagel M, Zahn K, Beutel K, Schmitt H-J, Ullmann U, Rautenberg P (2001) New LightCycler PCR for rapid and sensitive quantification of par-vovirus B19 DNA guides therapeutic decision-making in relapsing infections. J Clin Microbiol 39:4413–4419PubMedCrossRefGoogle Scholar
  69. 69.
    Wellinghausen N (2001) Detection of legionellae in hospital water samples by quantitative real-time Light-Cycler PCR. Appl Environ Microbiol 67:3985–3993PubMedCrossRefGoogle Scholar
  70. 70.
    Morris T, Robertson B, Gallagher M (1996) Rapid reverse transcription-PCR detection of hepatitis C virus RNA in serum by using the TaqMan fluorogenic detection system. J Clin Microbiol 34:2933–2936PubMedGoogle Scholar
  71. 71.
    Desjardin LE, Chen Y, Perkins MD, Teixeira L, Cave MD, Eisenach KD (1998) Comparison of the PE/ABS 7700 system (TaqMan) and competitive PCR for quantification of IS110 DNA in sputum during treat-ment of tuberculosis. J Clin Microbiol 36:2284–2288Google Scholar
  72. 72.
    Lin M-H, Chen T-C, Kuo T-T, Tseng C-C, Tseng C-P (2000) Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol 38:4121–4125PubMedGoogle Scholar
  73. 73.
    Jordan JA, Lowery D, Trucco M (2001) TaqMan-based detection of Trichomonas vaginalis DNA from female genital specimens. J Clin Microbiol 39:3819–3822PubMedCrossRefGoogle Scholar
  74. 74.
    Drosten C, Seifried E, Roth K (2001) TaqMan 5’-nuclease human immunodeficiency virus type 1 PCR assay with phage-packaged competitive internal con-trol for high-throughput blood donor screening. J Clin Microbiol 39:4302–4525PubMedCrossRefGoogle Scholar
  75. 75.
    Jauregui LH, Higgins J, Zarlenga D, Dubey JP, Lunney JK (2001) Development of a real-time PCR assay for detection of Toxoplasma gondii in pig and mouse tissues. J Clin Microbiol 39:2065–2071PubMedCrossRefGoogle Scholar
  76. 76.
    Kawasaki S, Kimura B, Fujii T (2001) Comparison of TaqMan Salmonella amplification/detection kit with standard culture procedures for detection of Salmo-nella in meat samples. J Food Hygien Soc Jpn 42:33–39CrossRefGoogle Scholar
  77. 77.
    Guiver M, Levi K, Oppenheim BA (2001) Rapid iden-tification of Candida species by TaqMan PCR. J Clin Pathol 54:362–366PubMedCrossRefGoogle Scholar
  78. 78.
    Lewin SR, Vesanen M, Kostrikis L, Hurley A, Duran M, Zhang L, Ho DD, Markowitz M (1999) Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus typei-infected individuals on prolonged effective antiretro-viral therapy. J Clin Microbiol 73:6099–6103Google Scholar
  79. 79.
    McKillip JL, Drake M (2000) Molecular beacons poly-merase chain reaction detection of Escherichia coli Oi57:H7 in milk. J Food Prot 63:855–859PubMedGoogle Scholar
  80. 80.
    Li Q-G, Liang J-X, Luan G-Y, Zhang Y, Wang K (2000) Molecular beacon-based homogeneous fluorescence PCR assay for the diagnosis of infectious diseases. Analytical Sciences 16:245–248CrossRefGoogle Scholar
  81. 81.
    Fortin NY, Mulchandani A, Chen W (2001) Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli Oi57:H7. Anal Biochem 289:281–288PubMedCrossRefGoogle Scholar
  82. 82.
    Fang Y, Wu WH, Pepper JL, Larsen JL, Marras SAE, Nelson EA, Epperson WB, Christopher-Hennings J (2002) Comparison of real-time, quantitative PCR with molecular beacons to nested PCR and culture methods for detection of Mycobacterium avium subsp. paratuberculosis in bovine fecal samples. J Clin Microbiol 40:287–291PubMedCrossRefGoogle Scholar
  83. 83.
    Giesendorf BA, Vet JA, Tyagi S, Mensink EJ, Trijbels 6FJ, Blom HJ (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clin Chem 44:482–486PubMedGoogle Scholar
  84. 84.
    Marras SA, Kramer FR, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molec-ular beacons. Genet Anal 14:151–156PubMedCrossRefGoogle Scholar
  85. 85.
    Cheung VG, Morley M, Aguilar F, Massimi A, Kucher-lapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21:15–19PubMedCrossRefGoogle Scholar
  86. 86.
    Kozal MJ, Shah N, Shen N, Yang R, Fucini R, Merigan TC, Richman DD, Morris D, Hubbell E, Chee M, Gin-geras TR (1996) Extensive polymorphisms observed in HIV-i clade B protease gene using high-density oligonucleotide arrays. Nat Med 2:753–759PubMedCrossRefGoogle Scholar
  87. 87.
    Debrouck C, Goodfellow PN (1999) DNA microarrays in drug discovery and development. Nat Genet 21:48–50CrossRefGoogle Scholar
  88. 88.
    Pastinen T, Kurg A, Metspalu A, Peltonen L, Syvänen A-C (1997) Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res 7:606–614PubMedGoogle Scholar
  89. 89.
    Erdogan F, Kirchner R, Mann W, Ropers H-H, Nuber UA (2001) Detection of mitochondrial single nucleotide polymorphisms using a primer elongation reaction on oligonucleotide microarrays. Nucleic Acids Res 29:36CrossRefGoogle Scholar
  90. 90.
    Anderson RC, Xing S, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 28:e60PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • Alexandre J. da Silva
  • Norman J. Pieniazek

There are no affiliations available

Personalised recommendations