A new preconditioner for the Oseen equations

  • A. Wathen
  • D. Loghin
  • D. Kay
  • H. Elman
  • D. Silvester
Conference paper


We describe a preconditioner for the linearised incompressible Navier-Stokes equations (the Oseen equations) which requires as components a preconditioner/solver for a discrete Laplacian and for a discrete advection-diffusion operator. With this preconditioner, convergence of an iterative method such as GMRES is independent of the mesh size and depends only mildly on the viscosity parameter (the inverse Reynolds number). Thus when the component preconditioner/solvers are effective on their respective subproblems (as one expects with an appropriate multigrid cycle for instance)a fast Oseen solver results.


Krylov Subspace Picard Iteration Drive Cavity Conjugate Gradient Iteration Oseen Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brezzi, F. (1987): New applications of mixed finite element methods. Proceedings of the International Congress of Mathematicians. Vol. 2. In: Gleason, A.M. (ed.): American Mathematical Society, Providence, RI, pp. 1335–1347Google Scholar
  2. [2]
    Johnson, C., Nävert, D., Pitkäranta, J. (1984): Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45, 285–312MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Kay, D., Loghin, D., Wathen, A.J. (2002): A preconditioner for the steady-state Navier-Stokes equations. SIAM J. Sci. Comput. 24, 237–256MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Karakashian, O.A. (1982): On a Galerkin-Lagrange multiplier method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 19, 909–923MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Loghin, D., Wathen, A.J. (2001): Schur complement preconditioning for elliptic systems of partial differential equations. Numer. Linear Algebra Appl., submittedGoogle Scholar
  6. [6]
    Murphy, M.E, Golub, G.H., Wathen, A.J. (2000): A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Oosterlee, C.W., Washio, T. (1998): An evaluation ofparallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J. Sci. Comput. 19, 87–110MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Ramage, A. (1999): Amultigrid preconditioner for stabilised discretisations of advectiondiffusion problems. J. Comput. Appl. Math. 101, 187–203MathSciNetCrossRefGoogle Scholar
  9. [9]
    Reusken, A. (2002): Convergence analysis of a multigrid method for convection-diffusion equations. Numer Math. 91, 323–349MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Saad, Y., Schultz, M. (1986): GMRES: a generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Silvester, D.J., Elman, H.S., Kay, D., Wathen, A.J. (2001): Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Smith, B.P., Bjørstad, P.E., Gropp, W.D. (1996): Domain decomposition. Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  13. [13]
    Trottenberg, U., Oosterlee C.W., Schüller, A. (2001): Multigrid. Academic Press, LondonMATHGoogle Scholar
  14. [14]
    Wathen, A.J. (1987): Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7, 449–457MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Wathen, A.J., Silvester, D.J. (1993): Fast iterative solution of stabilised Stokes systems. I. Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30, 630–649MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Wittum, G. (1989): Multi-grid methods for the Stokes and Navier-Stokes equations. Numer. Math. 54, 543–563MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    de Zeeuw, P.M., van Asselt, E.J. (1985): The convergence rate of multigrid algorithms applied to the convection-diffusion equation. SIAM J. Sci. Statist. Comput. 6, 492–503MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • A. Wathen
    • 1
  • D. Loghin
    • 1
  • D. Kay
    • 2
  • H. Elman
    • 3
  • D. Silvester
    • 4
  1. 1.Computing LaboratoryOxford UniversityOxfordUK
  2. 2.School of Mathematical SciencesSussex UniversityBrightonUK
  3. 3.Department of Computer Science and Institute of Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  4. 4.Department of MathematicsUMISTManchesterUK

Personalised recommendations