Advertisement

Two-level preconditioning of a discontinuous Galerkin method for radiation diffusion

  • J. S. Warsa
  • M. Benzi
  • T. A. Wareing
  • J. E. Morel
Conference paper

Summary

Weproposea two-level preconditioning strategy for the iterative solution of large sparse linear systems arising from a discontinuous Galerkin discretization of the radiation diffusion equations. The idea is to usea continuous finite element discretization of theoriginal, elliptic diffusion equation for preconditioning the discontinuous equations. We show how our preconditioner is developed and applied to radiation diffusion problems on unstructured, tetrahedral meshes. We present numerical results to illustrate its effectiveness.

Keywords

Discontinuous Galerkin Method Radiation Diffusion Tetrahedral Mesh Scalar Flux Local Discontinuous Galerkin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alcouffe, R.E. (1977): Diffusion synthetic acceleration methods for the diamond-differenced discrete-ordinate equations. Nuclear Sci. Engrg. 64, 344–355Google Scholar
  2. [2]
    Arnold, D.N., Brezzi, E, Cockburn, B., Marini, L.D. (2001): Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779MathSciNetCrossRefGoogle Scholar
  3. [3]
    Ashby, S.F, Brown, P.N., Dorr, M.R., Hindmarsh, A.C. (1995): A linear algebraic analysis of diffusion synthetic acceleration for the Boltzmann transport equation. SIAM J. Numer. Anal. 32, 128–178MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Cockburn B., Karniadakis, G.E., Shu, C.-W. (eds.) (2000): Discontinuous Galerkin methods. (Lecture Notes in Computational Science and Engineering, vol. 11). Springer, BerlinMATHGoogle Scholar
  5. [5]
    Cockburn, B., Shu, C.-W. (1998): The local discontinuous Galerkin method for timedependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Freund, R.W., Nachtigal, N.M. (1995): Software for simplified Lanczos and QMR algorithms. Appl. Numer. Math. 19, 319–341MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Larsen, E.W. ( 1992): The asymptotic diffusion limit of discretized transport problems. Nuclear Sci. Engrg. 112, 336–346Google Scholar
  8. [8]
    Saad, Y, Schultz, M.H. (1986): GMRES: a generalized minim al residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    van der Vorst, H.A. (1992): Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644MATHCrossRefGoogle Scholar
  10. [10]
    Wareing, T.A., McGhee, J.M., Morel J.E. (1996): ATTILA: a three-dimensional, unstructured tetrahedral mesh discrete ordinates transport code. Trans. Amer. Nuclear Soc. 75, 146–147Google Scholar
  11. [11]
    Wareing, T.A., McGhee, J.M., Morel, J.E., Pautz, S.D. (2001): Discontinuous finite element S n methods on three-dimensional unstructured grids. Nuclear Sci. Engrg. 138, 1–13Google Scholar
  12. [12]
    Warsa, J.S., Wareing, T.A., Morel, J.E. (2002): Fully consistent diffusion synthetic acceleration of linear discontinuous S n transport discretizations on unstructured tetrahedral meshes. Nuclear Sci. Engrg. 141, 236–251Google Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • J. S. Warsa
    • 1
  • M. Benzi
    • 2
  • T. A. Wareing
    • 1
  • J. E. Morel
    • 1
  1. 1.Transport Methods GroupLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations