Application of AMG to the numerical simulation of 3D ultrasonic transducers

  • E. Heikkola
  • J. Martikainen
Conference paper


We consider the application of an algebraic multigrid method (AMG) to the numerical simulation of ultrasonic transducers. This method can be applied efficiently both to the solution of resonance problems and to the transient simulation of a transducer. We use an added mass formulation to compute the resonance modes of a transducer coupled to incompressible fluid. For the solution of this formulation, we introduce an efficient iterative procedure with an AMG-based preconditioner. Transient simulation with the central difference scheme requires the solution of a potential equation on each time-step, which can also be performed by the AMG method. We report numerical results on the efficiency and accuracy of the computations.


Ultrasonic Transducer Transient Simulation Fluid Coupling Resonance Problem Symmetric Eigenvalue Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Allik, H., Webman, K., Hunt, J. (1970): Vibrational response of sonar transducers using piezoelectric finite elements. J. Acoust. Soc. Amer. 56, 1782–1791CrossRefGoogle Scholar
  2. [2]
    Bermúdez, A., Rodríguez, R., Santamarina, D. (2000): A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Boucher, D., Lagier, M., Maerfeld, C. (1981): Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-perturbation method. IEEE Trans. Sonics Ultrasonics 28, 318–330CrossRefGoogle Scholar
  4. [4]
    Kickinger, F. (1998): Algebraic multi-grid for discrete elliptic second-order problems. In: Hackbusch, W., Wittum, G. (eds.): Multigrid methods. V. Springer, Berlin, pp. 157–172CrossRefGoogle Scholar
  5. [5]
    Lerch, R. (1990): Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 37, 233–247CrossRefGoogle Scholar
  6. [6]
    Martikainen, J., Rossi, T., Toivanen, J. (2001): Computation of a few smallest eigenvalues of elliptic operators using ast elliptic solvers. Comm. Numer. Methods Engrg. 17, 521–527MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Paige, C., Saunders, M. (1975): Solutions of sparse indefinite systems of linear equations. SIAM, J. Numer. Anal. 12, 617–629MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Ruge, J., Stüben, K. (1987): Algebraic multigrid. In: McCormick, S.F. (ed.): Multigrid methods. SIAM, Philadelphia, PA, pp. 73–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • E. Heikkola
    • 1
  • J. Martikainen
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations