A survey of DG methods for elliptic problems

  • L. D. Marini


We present a formulation for elliptic problems that includes all the discontinuous Galerkin approximations currently present in the literature.


Elliptic Problem Discontinuous Galerkin Method Numerical Flux Interior Penalty Nonconforming Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnold, D.N. (1982): An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Arnold, D.N., Brezzi, F, Cockburn, B., Marini, L.D. (2001): Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779MathSciNetCrossRefGoogle Scholar
  3. [3]
    Babuška, I., Zlámal, M. (1973): Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Bassi, F, Rebay, S. (1997): A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Bassi, F, Rebay, S., Mariotti, G., Pedinotti, S., Savini, M. (1997): A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.): Second European conference on turbomachinery: fluid dynamics and thermodynamics. Technologisch Institüt, Antwerp, pp. 99–108Google Scholar
  6. [6]
    Baumann, C.E., Oden, J.T. (1999): A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175, 311–341MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Brezzi, F, Manzini, G., Marini, D., Pietra, P., Russo, A. (1999): Discontinuous finite elements for diffusion problems. In: Incontri di Studio N. 16: Francesco Brioschi (1824–1897). Convegno di studi matematici. Istituto Lombardo, Accademia di Scienze e Lettere, Milan, pp. 197–217Google Scholar
  8. [8]
    Brezzi, E., Manzini, G., Marini, D., Pietra, P., Russo, A. (2000): Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16, 365–378MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Cockburn, B., Shu, C.-W. (1998): The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Douglas, J., Jr., Dupont, T. (1976): Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.-L. (eds.): Computing methods in applied sciences. (Lecture Notes in Physics, vol. 58). Springer, Berlin, pp. 207–216CrossRefGoogle Scholar
  11. [11]
    Heinrich, B., Pietsch, K. (2002): Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68, 217–238MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Rivière, B., Wheeler, M.E, Girault, V. (1999): Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3, 337–360MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • L. D. Marini
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Pavia, and IMATICNRPaviaItaly

Personalised recommendations