Advertisement

LDG methods for Stokes flow problems

  • B. Cockburn
  • G. Kanschat
  • D. Schötzau

Summary

We review the development of local discontinuous Galerkin methods for the Stokes problem in incompressible fluid flow. We explain the derivation of these methods and present the corresponding error estimates. The case of natural boundary conditions is treated. A series of numerical examples are shown.

Keywords

Discontinuous Galerkin Method Stokes Problem Natural Boundary Condition Numerical Flux Mixed Finite Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D. (2001): Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779MathSciNetCrossRefGoogle Scholar
  2. [2]
    Baker, G.A., Jureidini, W.N., Karakashian, O.A. (1990): Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27, 1466–1485MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Bassi, E, Rebay. S. (1997): A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Berrone, S. (2001): Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Engrg. 190, 4435–4455MathSciNetCrossRefGoogle Scholar
  5. [5]
    Castillo, P.: Performance of discontinuous Galerkin methods for elliptic partial differential equations. SIAM J. Sci. Comput., to appearGoogle Scholar
  6. [6]
    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D. (2000): An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Cockburn, B., Dawson, C. (2002): Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Comput. Geosciences 6, 505–522MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Cockburn, B., Dawson, C. (2000): Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions. In: Whiteman, J.R. (ed.): The mathematics of finite elements and applications. X. MAFELAP 1999. Elsevier, Oxford, pp. 225–238Google Scholar
  9. [9]
    Cockburn, B., Hou, S., Shu, c.-W. (1990): The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54, 545–581MathSciNetMATHGoogle Scholar
  10. [10]
    Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D. (200 1): Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285MathSciNetCrossRefGoogle Scholar
  11. [11]
    Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C. (2002): Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40, 319–343MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Cockburn, B., Lin, S.Y., Shu, C.-W. (1989): TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84, 90–113MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Cockburn, B., Shu, C.-W. (1989): TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws. II. General framework. Math. Comp. 52, 411–435MathSciNetMATHGoogle Scholar
  14. [14]
    Cockburn, B., Shu, C.-W. (1991): The Runge-Kutta local projection P 1-discontinuous Galerkin method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér, 25, 337–361MathSciNetMATHGoogle Scholar
  15. [15]
    Cockburn, B., Shu, C.-W. (1998): The local discontinuous Galerkin method for timedependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Cockburn, B., Shu, C.-W. (1998): The Runge-Kutta discontinuous Galerkin finite element method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Franca, L., Stenberg, R. (1991): Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Gopalakrishnan, J., Kanschat, G. (2000): A multilevel discontinuous Galerkin method. Numer. Math., to appearGoogle Scholar
  19. [19]
    Hansbo, P., Larson, M.G. (2002): Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Engrg. 191, 1895–1908MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Heywood, J., Rannacher, R., Turek, S. (1996): Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Internat. J. Numer. Methods Fluids 22, 325–352MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Karakashian, O.A., Jureidini, W.N. (1998): A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35, 93–120MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Perugia, I., Schötzau, D. (2002): An hp-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17, 561–571MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Perugia, I., Schötzau, D. (2001): On the coupling of local discontinuous Galerkin and conforming finite element methods. J. Sci. Comput. 16, 411–433MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • B. Cockburn
    • 1
  • G. Kanschat
    • 2
  • D. Schötzau
    • 3
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergGermany
  3. 3.Department of MathematicsUniversity of BaselBaselSwitzerland

Personalised recommendations