An anisotropic recovery-based a posteriori error estimator

  • S. Micheletti
  • S. Perotto
Conference paper


In this work we attempt to merge the advantages of an anisotropic mesh with an a posteriori error indicator, which is reasonably accurate and computationally simple, and is based on the Zienkiewicz-Zhu gradient recovery. This gives rise to an anisotropic version of the estimator. In particular, we show how it is possible to use it as part of an iterative algorithm for predicting the optimal mesh and we study its efficiency on the Poisson problem numerically.


Error Estimator Posteriori Error Energy Norm Effectivity Index Discretization Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ainsworth, M., Oden, J.T. (2000): A posteriori error estimation in finite element analysis. Wiley, New YorkMATHCrossRefGoogle Scholar
  2. [2]
    Ciarlet, Ph.G. (1991): Basic error estimates for elliptic problems. In: Ciarlet, Ph.G., Lions, J.-L. (eds.): Handbook of numerical analysis. Vol. II. Finite element methods. Part 1. North-Holland, Amsterdam pp. 17–351Google Scholar
  3. [3]
    Dolejší, V. (1998): Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1, 165–178MATHCrossRefGoogle Scholar
  4. [4]
    Dompierre, J., Vallet, M.-G., Fortin, M., Habashi, W.G., Aït-Ali-Yahia, D., Boivin, S., Bourgault, Y., Tam, A. (1995): Edge-based mesh adaptation for CFD. In: Proceedings of the conference on numerical methods for the Euler and Navier-Stokes equations. Centre de Recherches Mathérnatiques — Centre de Recherche en Calcul Appliqué, Montréal, pp. 265–299Google Scholar
  5. [5]
    Formaggia, L., Perotto, S. (2001): New anisotropic a priori error estimates. Numer. Math. 89, 641–667MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Formaggia, L., Perotto, S. (2002): Anisotropic error estimates for elliptic problems. Numer. Math., to appear. DOI 10.1007/s002110200415Google Scholar
  7. [7]
    George, P.-L., Borouchaki, H. (1998): Delaunay triangulation and meshing. Application to finite elements. Editions Hermès, ParisGoogle Scholar
  8. [8]
    Kžížek, M., Neittaanmäki, P. (1984): Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45, 105–116MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kžížek, M., Neittaanmäki, P. (1987): On a global superconvergence of the gradient of linear triangular elements. J. Comput. Appl. Math. 18, 221–233MathSciNetCrossRefGoogle Scholar
  10. [10]
    Lions, J.-L., Magenes, E. (1972): Non-homogeneous boundary value problems and applications. I. Springer, BerlinCrossRefGoogle Scholar
  11. [11]
    Micheletti, S., Perotto, S. (2002): Analysis of the efficiency and reliability of an anisotropic Zienkiewicz-Zhu error estimator, in preparationGoogle Scholar
  12. [12]
    Picasso, M. (2003): Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Comm. Numer. Methods Engrg. 19, 13–23MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Rodríguez, R. (1994): Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations 10, 625–635MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Veeser, A. (2001): Private communicationGoogle Scholar
  15. [15]
    Verfürth, R. (1996): A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner, StuttgartMATHGoogle Scholar
  16. [16]
    Zienkiewicz, O.C., Zhu, J.Z. (1992): The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Internat. J. Numer. Methods Engrg. 33, 1331–1364MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Zienkiewicz, O.C., Zhu, J.Z. (1992): The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. Internat. J. Numer. Methods Engrg. 33, 1365–1382MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • S. Micheletti
    • 1
  • S. Perotto
    • 1
  1. 1.MOX, Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanoItaly

Personalised recommendations