Advertisement

A posteriori error estimators for a model parameter estimation problem

  • K. Kunisch
  • W. B. Liu
  • N. Yan
Conference paper

Summary

In this work, wede rive a posteriori error estimates for a model parameter estimation problem. Both upper and lower error bounds are obtained.

Keywords

Optimal Control Problem Posteriori Error Posteriori Error Estimate Finite Element Approximation Posteriori Error Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen, Z., Nochetto, R.H. (2000): Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Ciarlet, P.G. (1978): The finite element method for elliptic problems. North-Holland, AmsterdamMATHGoogle Scholar
  3. [3]
    Becker, R. (2001): Adaptive finite elements for optimal control problems. Habilitationsschrift, Universität Heidelberg, HeidelbergGoogle Scholar
  4. [4]
    Kunisch, K., Tai, X.-C. (1997): Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces. SIAM J. Numer. Anal. 34, 91–118MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Kunisch, K., Liu, W.B., Yan, N.: A posteriori error estimators for some parameter estimation problems, in preparationGoogle Scholar
  6. [6]
    Ladyzhenskaya, O.A., Ural’tseva, N.N. (1968): Linear and quasilinear elliptic equations. Academic Press, New YorkMATHGoogle Scholar
  7. [7]
    Liu, W.B., Yan, N. (2001): A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73–99MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Liu, W.B., Yan, N. (2001): A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15, 285–309MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Verfürth, R. (1996): A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner, StuttgartMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • K. Kunisch
    • 1
  • W. B. Liu
    • 2
  • N. Yan
    • 3
  1. 1.Department of MathematicsUniversity of GrazGrazAustria
  2. 2.Institute of Mathematics and StatisticsUniversity of KentCanterburyUK
  3. 3.Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations