Advertisement

A posteriori estimates for FE-solutions of variational inequalities

  • H. Blum
  • A. Schröder
  • F. T. Suttmeier
Conference paper

Summary

The concept of weighted residual based estimators for a posteriori error control is extended in two respects: first, variational inequalities arising from problems in structural mechanics are treated by a suitable adaptation of Natterer’s duality argument; second, the arguments are carried over to p- and hp-finite element spaces, for which we propose an adaptive hp-algorithm. Several numerical tests confirm the robustness and efficiency of our results.

Keywords

Variational Inequality Posteriori Error Obstacle Problem Posteriori Error Estimate Finite Element Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Babuška, I., Gui, W. (1986): The h,p and hp versions of the finite element method in 1 dimension. III. The adaptive h-p version. Numer. Math. 49, 659–683MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Babuška, I., Guo, B. (1986): The hp version of the finite element method. I. The basic approximation results. Comput Mech. 1, 21–41MATHCrossRefGoogle Scholar
  3. [3]
    Backes, E. (1997): Gewichtete a posteriori Fehleranalyse bei der adaptiven Finite-Elemente-Methode: Ein Vergleich zwischen Residuen-und Bank-Weiser-Schätzer. Diplomarbeit. Institut für Angewandte Mathematik, Universität Heidelberg, HeidelbergGoogle Scholar
  4. [4]
    Becker, R. (1995): An adaptive finite element method for the incompressible Navier-Stokes equations on time-dependent domains. Dissertation. Institut für Angewandte Mathematik, Universität Heidelberg, HeidelbergGoogle Scholar
  5. [5]
    Becker, R., Rannacher, R. (1996): A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264MathSciNetMATHGoogle Scholar
  6. [6]
    Blum, H., Schröder, A., Suttmeier, F.T. (2002): A posteriori error estimates for FE-schemes of higher order for variational equations and inequalities, in preparationGoogle Scholar
  7. [7]
    Blum, H., Suttmeier, F.T. (2000): An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37, 65–77MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Blum, H., Suttmeier, F.T. (2000): Weighted error estimates for finite element solutions of variational inequalities. Computing 65, 119–134MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Brézis, H., Stampacchia, G. (1968): Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96, 153–180MathSciNetMATHGoogle Scholar
  10. [10]
    Carstensen, C., Scherf, O., Wriggers, P. (1999): Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput. 20, 1605–1626MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Duvaut, G., Lions, J.-L. (1976): Inequalities in mechanics and physics. Springer, BerlinMATHCrossRefGoogle Scholar
  12. [12]
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C. (1995): Introduction to adaptive methods for differential equations. Acta Numerica. 1995. Cambridge University Press, Cambridge, pp.105–158Google Scholar
  13. [13]
    Hansbo, P., Johnson, C. (1999): Adaptive finite element methods for elastostatic contact problems. In: Bern, M. et al. (eds.): Grid generation and adaptive algorithms. Springer, New York, pp. 135–149CrossRefGoogle Scholar
  14. [14]
    Johnson, C., Hansbo, P. (1992): Adaptive finite element methods in computational mechanics. Comput Methods Appl. Mech. Engrg. 101, 143–181MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Kanschat, G. (1996): Parallel and adaptive Galerkin methods for radiative transfer problems. Dissertation. Institut für Angewandte Mathematik, University of Heidelberg, HeidelbergGoogle Scholar
  16. [16]
    Lions, J.-L., Stampacchia, G. (1967): Variational inequalities. Comm. Pure Appl. Math. 20, 493–519MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Natterer, F.(1976): Optimale L 2-Konvergenz finiter Elemente bei Variationsungleichungen. In: Frehse, J. et al. (eds.): Finite Elemente. (Bonner Mathematische Schriften 89) Institut für Angewandte Mathematik, Universität Bonn, Bonn, pp. 1–12Google Scholar
  18. [18]
    Rannacher, R. (1999): Error control in finite element computations. An introduction to error estimation and mesh-size adaptation. In: Bulgak, H., Zenger, C. (eds.): Error control and adaptivity in scientific computing. Kluwer, Dordrecht, pp. 247–278CrossRefGoogle Scholar
  19. [19]
    Rannacher, R., Suttmeier, F.T. (1999): A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Engrg. 176, 333–361MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Schwab, C. (1998): p-and hp-finite element methods. Clarendon Press, OxfordGoogle Scholar
  21. [21]
    Suttmeier, F.T. (1996): Adaptive finite element approximation of problems in elastoplasticity theory. Dissertation. Institut für Angewandte Mathematik, University of Heidelberg, HeidelbergGoogle Scholar
  22. [22]
    Tricomi, F. (1955): Vorlesungen über Orthogonalreihen. Springer, BerlinMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • H. Blum
    • 1
  • A. Schröder
    • 1
  • F. T. Suttmeier
    • 1
  1. 1.Fachbereich MathematikUniversität DortmundDortmundGermany

Personalised recommendations