Advertisement

On the discontinuous Galerkin method for the numerical solution of compressible high-speed flow

  • V. Dolejší
  • M. Feistauer

Summary

The paper deals with an application of the discontinuous Galerkin finite element (DG-FE) method to the numerical solution of a system of hyperbolic equations. We extend our results from [8,9], where two versions of the DG-FE method were applied to the scalar convection-diffusion equation. In order to avoid spurious oscillations near discontinuities we develop a new limiting which is based on the control of interelement jumps and switches from piecewise linear to piecewise constant approximations. Isoparametric finite elements are used near a curved boundary of nonpolygonal computational domain in order to achieve a physically admissible and sufficiently accurate numerical solution. Numerical examples of transonic flow through the GAMM channel and around the NACA0012 airfoil are presented. Finally, we mention some theoretical results obtained for a modified DG-FE method applied to a nonlinear convection-diffusion problem.

Keywords

Euler Equation Discontinuous Galerkin Method Bilinear Mapping Transonic Flow Piecewise Linear Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Angot, P., Dolejší, V., Feistauer, M., Felcman, J. (1998): Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43, 263–310MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bassi, F., Rebay, S. (1997): High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Bassi, F., Rebay, S. (1997): A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A. (2000): Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16, 365–378MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Cockburn, B. (1999): Discontinuous Galerkin methods for convection dominated problems. In: Barth, T.J., Deconinck, H. (eds.): High-order methods for computational physics. (Lecture Notes in Computational Science and Engineering, vol. 9). Springer, Berlin, pp. 69–224Google Scholar
  6. [6]
    Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) (2000): Discontinuous Galerkin methods. (Lecture Notes in Computational Science and Engineering, vol. 11). Springer, BerlinGoogle Scholar
  7. [7]
    Dolejší, V. (1998): Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1, 165–178MATHCrossRefGoogle Scholar
  8. [8]
    Dolejší, V., Feistauer, M., Schwab. C. (2002): A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems. Calcolo 39, 1–40MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Dolejší, V., Feistauer, M., Schwab. C. (2002): On some aspects of the discontinuous Galerkin finite element method for conservation laws. Math. Comput. Simulation, to appear. DOI: 10.1016/S0378-4754(02)00087-3Google Scholar
  10. [10]
    Feistauer, M. (1993): Mathematical methods in fluid dynamics. Longman, HarlowMATHGoogle Scholar
  11. [11]
    Feistauer, M., Felcman, J. (1997): Theory and applications of numerical schemes for convection-diffusion problems and compressible Navier-Stokes equations. In: Whiteman, J.R. (ed.): The mathematics of finite elements and applications. Wiley, pp. 175–194Google Scholar
  12. [12]
    Feistauer, M., Felcman, J., Dolejší, V. (1996): Numerical simulation of compresssible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76, suppl. 4, 297–300MATHGoogle Scholar
  13. [13]
    Feistauer, M., Felcman, J., Lukáčová, M. (1995): Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63, 179–199MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Feistauer, M., Felcman, J., Lukáčová, M. (1997): On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. Numer. Methods Partial Differential Equations 13, 163–190MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Feistauer, M., Felcman, J., Lukáčová, M., Warnecke, G. (1999): Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36, 1528–1548MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Felcman, J. (2001): On a 3D adaptation for compressible flow. In: Neittaanmaki, P., Křížek, M. (eds.): Finite element methods for three-dimensional problems. Gakkotosho, Tokyo, pp. 85–97Google Scholar
  17. [17]
    Felcman, J., Šolín, P. (1998): On the construction of the Osher-Solomon scheme for 3D Euler equations. East-West J. Numer. Math. 6, 43–64MathSciNetMATHGoogle Scholar
  18. [18]
    Hartmann, R., Houston, P. (2002): Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput.Google Scholar
  19. [19]
    Houston, P., Schwab, C.; Süli, E. (2002): Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Osher, S., Solomon, F. (1982): Upwind difference schemes for hyperbolic systems of conservation laws. Math. Compo 38, 339–374MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Spekreijse, S. P. (1987): Multigrid solution of the steady Euler equations. Centrum voor Wiskunde en Informatica, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • V. Dolejší
    • 1
  • M. Feistauer
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrahaCzech Republic

Personalised recommendations