Robustness in a posteriori error estimates for the Oseen equations with general boundary conditions

  • S. Berrone
Conference paper


We present a residual-based a posteriori error estimator for a stabilized finite element discretization of an incompressible Oseen-like model with general boundary conditions. We focus our attention on the behavior of the effectivity index and we carry out a numerical study of its sensitiveness to the problem and mesh parameters.


Reynolds Number Error Estimator Posteriori Error Uniform Grid Effectivity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Babuška, I., Durán, R., Rodríguez, R. (1992): Analysis of the efficiency of an a posteriori error estimator for linear triangular elements. SIAM J. Numer. Anal. 29, 947–964MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Berrone, S. (2001): Adaptive discretization of the stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Comput. Methods Appl. Mech. Engrg. 190, 4435–4455MathSciNetCrossRefGoogle Scholar
  3. [3]
    Berrone, S. (2002): Robustness in a posteriori error analysis for FEM flow models. Numer. Math. 91, 389–422MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brezzi, E, Fortin, M. (1991): Mixed and hybrid finite element methods. Springer, BerlinMATHCrossRefGoogle Scholar
  5. [5]
    Ciarlet, P.G. (1978): The finite element method for elliptic problems. North-Holland, AmsterdamMATHGoogle Scholar
  6. [6]
    Franca, L.P., Frey, S.L. (1992): Stabilized finite element methods. II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 209–233MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Girault, V., Raviart, P.-A. (1986): Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer, BerlinGoogle Scholar
  8. [8]
    Temam, R. (1979): Navier-Stokes equations. Theory and numerical analysis. Revised edition. North-Holland, AmsterdamGoogle Scholar
  9. [9]
    Verfürth, R. (1996): A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, ChichesterMATHGoogle Scholar
  10. [10]
    Verfürth, R. (1998): Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numer. Math. 78, 479–493MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Verfürth, R. (1998): A posteriori error estimators for convection-diffusion equations. Numer. Math. 80, 641–663MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • S. Berrone
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly

Personalised recommendations