Sobolev regularity estimation for hp-adaptive finite element methods

  • P. Houston
  • B. Senior
  • E. Süli


In this paper we develop an algorithm for estimating the local Sobolev regularity index of a given function by monitoring the decay rate of its Legendre expansion coefficients. On the basis of these local regularities, we design and implement an hp-adaptive finite element method based on employing discontinuous piecewise polynomials, for the approximation of nonlinear systems of hyperbolic conservation laws. The performance of the proposed adaptive strategy is demonstrated numerically.


Posteriori Error Dual Solution Posteriori Error Estimation Spectral Element Method Regularity Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adjerid, S., Aiffa, M., Flaherty, J.E. (1999): Computational methods for singularly perturbed systems. In: Cronin, J., O’Malley, R.E. (eds.): Analyzing multiscale phenomena using singular perturbation methods. American Mathematical Society, Providence, RIGoogle Scholar
  2. [2]
    Ainsworth, M., Oden, J.T. (2000): A posteriori error estimation in finite element analysis. Wiley, New YorkMATHCrossRefGoogle Scholar
  3. [3]
    Ainsworth, M., Senior, B. (1998): An adaptive refinement strategy for hp-finite element computations. Appl. Numer. Math. 26, 165–178MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Babuška, I., Suri, M. (1987): The hp-version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér, 21, 199–238MATHGoogle Scholar
  5. [5]
    Becker, R, Rannacher, R. (2001): An optimal control approach to a-posteriori error estimation in finite element methods. In: Iserles, A. (ed.): Acta Numerica. 2001. Cambridge University Press, Cambridge, pp. 1–102Google Scholar
  6. [6]
    Bernardi, C., Fiérier, N., Owens, R.G. (2001): An error indicator for mortar element solutions to the Stokes problem. IMA J. Numer. Anal. 21, 857–886MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Bey, K.S., Patra, A, Oden, J.T. (1995): hp-version discontinuous Galerkin methods for hyperbolic conservation laws: a parallel adaptive strategy. Internal. J. Numer. Methods Engrg. 38, 3889–3908MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Demkowicz, L., Rachowicz, W., Devloo, Ph. (2002): A fully automatic hp-adaptivity. J. Sci. Comput. 17, 117–142MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Douglass, S.A. (1996): Introduction to mathematical analysis. Addison-Wesley, Reading, MAMATHGoogle Scholar
  10. [10]
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C. (1995): Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.): Acta Numerica. 1995. Cambridge University Press, Cambridge, pp. 105–158Google Scholar
  11. [11]
    Gui, W., Babuška, I. (1986): The h, p and hp versions of the finite element method in 1 dimension. Part III. The adaptive hp version. Numer. Math. 49, 659–683MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Hartmann, R, Houston, P. (2001): Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput., to appearGoogle Scholar
  13. [13]
    Houston, P., Rannacher, R., Süli, E. (2000): A posteriori error analysis for stabilised finite element approximations of transport problems. Comput. Methods Appl. Mech. Engrg. 190, 1483–1508MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Houston, P., Süli, E. (2001): hp-Adaptive discontinuous Galerkin finite element methods for hyperbolic problems. SIAM J. Sci. Comput. 23, 1226–1252MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Jaffré, J., Johnson, C; Szepessy, A. (1995): Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5, 367–386MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Mavriplis, C. (1994): Adaptive mesh strategies for the spectral element method. Comput. Methods. Appl. Mech. Engrg. 116, 77–86MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Oden, J.T., Patra, A. (1995): A parallel adaptive strategy for hp finite elements. Comput. Methods. Appl. Mech. Engrg. 121, 449–470MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Oden, J.T., Patra, A., Feng, Y.S. (1992): An hp adaptive strategy. In: Noor, A.K. (ed.): Adaptive, multilevel, and hierarchical computational strategies. AMD Vol. 157. ASME, New York, pp. 23–46Google Scholar
  19. [19]
    Rachowicz, W., Demkowicz, L., Oden, J.T. (1989): Toward a universal hp adaptive finite element strategy. III. Design of hp meshes. Comput. Methods. Appl. Mech. Engrg. 77, 181–212MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Rannacher, R. (1999): Error control in finite element computations. An introduction to error estimation and mesh-size adaptation. In: Bulgak, H., Zenger, C. (eds.): Error control and adaptivity in scientific computing. Kluwer, Dordrecht, pp. 247–278CrossRefGoogle Scholar
  21. [21]
    Schwab, Ch. (1998): p-and hp-finite element methods. Theory and applications to solid and fluid mechanics. Oxford University Press, OxfordGoogle Scholar
  22. [22]
    Süli, E. (1998): A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In: Kröner, D. et al. (eds.): An introduction to recent developments in theory and numerics for conservation laws. (Lecture Notes in Computational Science and Engineering, vol. 5). Springer, Berlin, pp. 123–194Google Scholar
  23. [23]
    Süli, E., Houston, P. (2002): Adaptive finite element approximation of hyperbolic problems. In: Barth, T.J., Deconinck, H. (eds.): Error estimation and discretization methods in computation fluid dynamics. (Lecture Notes in Computational Science and Engineering, vol. 25). Springer, Berlin, pp. 269–344Google Scholar
  24. [24]
    Süli, E., Houston, P., Schwab, Ch. (2002): hp-finite element methods for hyperbolic problems. In: Whiteman, J.R. (ed.): The mathematics of finite elements and applications. X. MAFELAP 1999. Elsevier, Oxford, pp. 143–162Google Scholar
  25. [25]
    Süli, E., Houston, P., Senior, B. (2002): hp-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity. Int. J. Numer. Methods Fluids 40, 153–169MATHCrossRefGoogle Scholar
  26. [26]
    Szabó, B., Babuška, I. (1991): Finite element analysis. Wiley, New YorkMATHGoogle Scholar
  27. [27]
    Valenciano, J., Owens, R.G. (2000): An hp adaptive spectral element method for Stokes flow. Appl. Numer. Math. 33, 365–371MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Verfürth, R. (1996): A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner, StuttgartMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • P. Houston
    • 1
  • B. Senior
    • 1
  • E. Süli
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of LeicesterLeicesterUK
  2. 2.Computing LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations