Skip to main content

Multiscale adaptive processing for evolution equations

  • Conference paper
Numerical Mathematics and Advanced Applications
  • 1175 Accesses

Summary

We propose a multiresolution processing strategy which applies to general classes of discretization schemes for evolution equations. The goal of this processing is to reduce significantly the CPU cost and the memory space of the scheme, by making it adaptive, while preserving its order of accuracy. This strategy can be viewed as a combination of the adaptive mesh refinement (AMR) and multiresolution adaptive flux evaluation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgrall, R. (1997): Multiresolution analysis on unstructured meshes: application to CFD. In: Chetverushkin, B.N. et al. (eds.): Experimentation, modelling and computation in flow, turbulence and combustion. Vol. 2. Wiley, Chichester, pp. 147–156

    Google Scholar 

  2. Bécache, E., Joly, P., Tsogka, C. (2000): An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal. 37, 1053–1084

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M., Collela, P. (1989): Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84

    Article  MATH  Google Scholar 

  4. Berger, M., Oliger, J. (1984): Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoluzza, S. (1997): An adaptive collocation method based on interpolating wavelets. In: Dahmen, W. et al. (eds.): Multiscale wavelet methods for partial differential equations. Academic Press, San Diego, CA, 109–135

    Chapter  Google Scholar 

  6. Bihari, B., Harten, A. (1997): Multiresolution schemes for the numerical solution of 2-D conservation laws. I. SIAM J. Sci. Comput. 18, 315–354

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Cravero, I. (1997): Wavelet-based adaptive finite element method for advection-diffusion equations. Math. Models Methods Appl. Sci. 7, 265–289

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavaretta, A., Dahmen, W., Micchelli, C.A. (1991): Stationary subdivision. Mem. Amer. Math. Soc. 93, no. 453

    Google Scholar 

  9. Chiavassa, G., Donat, R. (2001): Point value multiscale algorithms for 2D compressible flows. University of Valencia, Technical report GrAN-99-4

    Google Scholar 

  10. Ciarlet, P.G. (1991): Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.): Handbook of numerical analysis. Vol. II. North-Holland, Amsterdam, pp. 17–351

    Google Scholar 

  11. Cohen, A. (2000): Wavelets in numerical analysis. In: Ciarlet, P.G., Lions, J.-L. (eds.): Handbook of numerical analysis. Vol. VII. North-Holland, Amsterdam, pp. 417–711

    Google Scholar 

  12. Cohen, A., Dahmen, W., De Vore, R. (2001): Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70, 27–75

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., Dahmen, W., De Vore, R. (2002): Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2, 203–245

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, A., Daubechies, I., Feauveau, J.-C. (1992): Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, A., Dyn, N., Kaber, S.M., Postel, M. (2000): Multiresolution schemes on triangles for scalar conservation laws. J. Comput. Phys. 161, 264–286

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, A., Kaber, S.M., Müller, S., Postel, M. (2003): Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. 72, 183–225

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, A., Masson, R. (1999): Wavelet adaptive methods for second-order elliptic problems, preconditioning, and adaptivity. SIAM J. Sci. Comput. 21, 1006–1026

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahlke, S., Dahmen, W., Urban, K. (2001): Adaptive wavelet methods for saddle point problems — optimal convergence rates. IGPM Report Nr. 204. RWTH, Aachen

    Google Scholar 

  19. Dahlke, S., DeVore, R. (1997): Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations 22, 1–16

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahmen, W. (1997): Wavelet and multiscale methods for operator equations. In: Iserles, A. (ed.): Acta Numerica. 1997. Cambridge University Press, Cambridge, pp. 55–228

    Google Scholar 

  21. Dahmen, W., Gottschlich-Müller, B., Müller, S. (2001): Multiresolution schemes for conservation laws. Numer. Math. 88, 399–443

    Article  MathSciNet  MATH  Google Scholar 

  22. Daubechies, I. (1992): Ten lectures on wavelets. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  23. De Vore, R. (1998): Nonlinear approximation. In: Iserles, A. (ed.): Acta Numerica. 1998. Cambridge University Press, Cambridge, pp. 51–150

    Google Scholar 

  24. De Vore, R., Lucier, B. (1990): High order regularity for conservation laws. Indiana Univ. Math. J. 39, 413–430

    Article  MathSciNet  Google Scholar 

  25. Dyn, N. (1992): Subdivision schemes in computer-aided geometric design. In: Light, W.A. (ed.): Advances in numerical analysis. Vol. II. Clarendon Press, Oxford

    Google Scholar 

  26. Gottschlich-Müller, B., Müller, S. (1999): Adaptive finite volume schemes for conservation laws based on local multi resolution techniques. In: Fey, M., Jeltsch, R. (eds.): Hyperbolic problems: theory, numerics, applications. Vol. I. Birkhäuser, Basel

    Google Scholar 

  27. Harten, A. (1994): Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338

    Article  MathSciNet  MATH  Google Scholar 

  28. Harten, A. (1993): Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153–192

    Article  MathSciNet  MATH  Google Scholar 

  29. Harten, A. (1995): Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342

    Article  MathSciNet  MATH  Google Scholar 

  30. Lucier, B. (1986): A moving mesh numerical method for hyperbolic conservation laws. Math. Comp. 46, 59–69

    Article  MathSciNet  MATH  Google Scholar 

  31. Meyer, Y. (1990): Ondelettes et opérateurs. I. Ondelettes. Hermann, Paris; translated as: Salinger, D.H. (1992): Wavelets and operators. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Sanders, R. (1983): On convergence of monotone finite difference schemes with variable spatial differencing. Math. Comp. 40, 91–106

    Article  MathSciNet  MATH  Google Scholar 

  33. Sjögreen, B. (1995): Numerical experiments with the multiresolution scheme for the compressible Euler equations. J. Comput. Phys. 117, 251–261

    Article  MATH  Google Scholar 

  34. Schröder-Pander, F., Sonar, T. (1995): Preliminary investigations on multiresolution analysis on unstructured grids. DLR Interner Bericht IB 223-95 A 36. DLR, Göttingen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Cohen, A. (2003). Multiscale adaptive processing for evolution equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_57

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics