Advertisement

The discrete maximum principle for stabilized finite element methods

  • E. Burman
  • A. Ern

Summary

We investigate stabilized Galerkin approximations of certain steady and unsteady convection-diffusion problems with linear and nonlinear source terms. We derive nonlinear stream line and cross wind diffusion methods that guarantee a discrete maximum principle. Our theoretical results apply to finite element methods with piecewise constant, discontinuous approximation in time and piecewise linear, continuous approximation in space on strictly acute triangulations. Practical implementations of the present methods are compared to previous schemes which lacked theoretical justification. Numerical results for various model problems are discussed in terms of solution quality and computational costs.

Keywords

Isotropic Diffusion Discrete Maximum Principle Maximum Overshoot Nonlinear Source Term Local Mesh Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Burman, E., Ern, A. (2002): Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the advection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 191, 3833–3855MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Ciarlet, P.G., Raviart, P.-A. (1973): Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2, 17–31MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Codina, R. (1993): A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Engrg. 110, 325–342MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Hughes, T.J.R., Mallet, M., Mizukami, A. (1986): A new finite element formulation for computational fluid dynamics. II. Beyond SUPG. Comput. Methods Appl. Mech. Engrg. 54, 341–355MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Johnson, C.; Schatz, A., Wahlbin, L. (1987): Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comp. 49, 25–38MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Shih, Y.-T., Elman, H.C. (1999): Modified streamline diffusion schemes for convection diffusion problems. Comput. Methods Appl. Mech. Engrg. 174, 137–151MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Wahlbin, L. (1978): Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration. RAIRON Anal. Numér, 12, 173–202MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • E. Burman
    • 1
  • A. Ern
    • 2
  1. 1.Ecole Polytechnique Federale de LausanneDMALausanneSwitzerland
  2. 2.CERMICSEcole Nationale des Ponts et Chaussées (ENPC)Marne la ValléeFrance

Personalised recommendations