Numerical analysis of a coupled radiative-conductive heat transfer problem

  • F. Asllanaj
  • G. Jeandel
  • J. R. Roche
  • D. Schmitt
Conference paper


A numerical method for solving a system of partial differential equations modelling steady-state coupled radiative-conductive heat transfer in semi-transparent media is proposed. The radiative transfer equation (RTE) is coupled with a nonlinear heat conduction equation. A simulation on a real insulator composed of silica fibers is illustrated.


Radiative Transfer Equation Silica Fiber Total Heat Flux Fixed Point Method Spectral Discretization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agoshkov, V. (1998): Boundary value problems for transport equations. (Modeling and Simulation in Science, Engineering and Technology). Birkhäuser Boston, Boston, MACrossRefGoogle Scholar
  2. [2]
    Asllanaj, E., Jeandel, G., Roche, J.R., Schmitt, D. (2001): Existence and uniqueness of a steady state solution of a coupled radiative-conductive heat transfer problem for a non-grey and anisotropically participating medium. Prépublication no. 2001/41. Institut Élie Cartan, Université Henri Poincaré, NancyGoogle Scholar
  3. [3]
    Asllanaj, F. (200 1): Etude et analyse numérique des transferts de chaleur couplés par rayonnement et conduction dans les milieux semi-transparents: application aux milieux fibreux. Ph.D. Thesis, Université Henri Poincaré, NancyGoogle Scholar
  4. [4]
    Brézis, H., Strauss, W.A. (1973): Semi-linear second-order elliptic equations in L 1. J. Math. Soc. Japan. 25, 565–590MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Da Prato, G. (1971): Somme d'applications non-linéaires. In: Symposia Mathematica. Vol. VII. Academic Press, London, pp. 233–268Google Scholar
  6. [6]
    Kelley, C.T. (1996): Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations. Transport Theory Statist. Phys. 25, 249–260MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Lee, S.C. (1988): Radiation heat-transfer model for fibers oriented parallel to diffuse boundaries. J. Thermophys. Heat Transfer 2, 303–308CrossRefGoogle Scholar
  8. [8]
    Martin, R.H., Jr. (1976): Nonlinear operators and differential equations in Banach spaces. Wiley, New YorkMATHGoogle Scholar
  9. [9]
    Özisik, M.N. (1973): Radiative transfer and interactions with conduction and convection. Wiley, New YorkGoogle Scholar
  10. [10]
    Ziamal, M. (1980): A finite element solution of the nonlinear heat equation. RAIRO Anal. Numér, 14, 203–216Google Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • F. Asllanaj
    • 1
  • G. Jeandel
    • 2
  • J. R. Roche
    • 3
  • D. Schmitt
    • 3
  1. 1.IECN and LEMTAFaculté des SciencesVandoeuvre lès NancyFrance
  2. 2.LEMTAFaculté des SciencesVandoeuvre lès NancyFrance
  3. 3.IECNFaculté des SciencesVandoeuvre lès NancyFrance

Personalised recommendations