Skip to main content

Consistency of a large time-step scheme for mean curvature motion

  • Conference paper
Book cover Numerical Mathematics and Advanced Applications

Summary

We propose a new scheme for the level set approximation of motion by mean curvature (MCM). The scheme originates from a representation formula recently given by Soner and Touzi, which allows us to construct large time-step, Godunov-type schemes. One such scheme is presented and its consistency is analyzed. We also provide and discuss some numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barles, G., Georgelin, Ch. (1995): A simple proof of the convergence of an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32, 484–500

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Y.-G., Giga, Y., Goto, S. (1991): Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33, 749–786

    MathSciNet  MATH  Google Scholar 

  3. Evans, L.C. (1993): Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42, 533–557

    Article  MathSciNet  MATH  Google Scholar 

  4. Evans, L.C. (1997): Regularity for fully nonlinear elliptic equations and motion by mean curvature. In: Bardi, M. et al. (eds.): Viscosity solutions and applications (Lecture Notes in Mathematics, vol. 1660). Springer, Berlin, pp. 98–133

    Chapter  Google Scholar 

  5. Evans, L.C, Spruck, J. (1991): Motion of level sets by mean curvature. I. J. Differential Geom. 33, 635–681

    MathSciNet  MATH  Google Scholar 

  6. Falcone, M., Ferretti, R. (2002): Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575

    Article  MathSciNet  MATH  Google Scholar 

  7. Grayson, M.A. (1989): A short note on the evolution of a surface via its mean curvature. Duke Math. J. 58, 555–558

    Article  MathSciNet  MATH  Google Scholar 

  8. Kloeden, RE., Platen, E. (1992): Numerical solution of stochastic differential equations. Springer, Berlin

    MATH  Google Scholar 

  9. Leoni, F. (2001): Convergence of an approximation scheme for curvature-dependent motions of sets. SIAM J. Numer. Anal. 39, 1115–1131

    Article  MathSciNet  MATH  Google Scholar 

  10. Merriman, B., Bence, J., Osher, S. (1992): Diffusion generated motion by mean curvature. In: Taylor, J. (ed.): Computational crystal growers workshop. American Mathematical Society, Providence, RI

    Google Scholar 

  11. Merriman, B., Bence, J., Osher, S. (1994): Motion of multiple functions: a level set approach. J. Comput. Phys. 112, 334–363

    Article  MathSciNet  Google Scholar 

  12. Osher, S., Fedkiw, R.P. (2001): Level-set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S., Sethian, J.A. (1988): Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49

    Article  MathSciNet  MATH  Google Scholar 

  14. Sethian, J.A. (1996): Level set methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Soner, H.M., Touzi, N. (2001): A stochastic representation for mean curvature type flows. Ann. Probab., to appear

    Google Scholar 

  16. Souganidis, P.E. (1997): Front propagation: theory and applications. In: Bardi, M. et al. (eds.): Viscosity solutions and applications. (Lecture Notes in Mathematics, vol. 1660). Springer, Berlin, pp. 186–242

    Chapter  Google Scholar 

  17. Staniforth, A.N., Côté, J. (1991): Semi-Lagrangian integration schemes for atmospheric models — a review. Monthly Weather Rev. 119, 2206–2223

    Article  Google Scholar 

  18. Strain, J. (1999): Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Falcone, M., Ferretti, R. (2003). Consistency of a large time-step scheme for mean curvature motion. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_46

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics