Linear co-volume scheme for anisotropic curvature driven motions

  • S. Corsaro
  • V. De Simone
  • A. Handlovičová
  • K. Mikula
  • F. Sgallari
Conference paper


We introduce a linear semi-implicit complementary volume numerical scheme for solving level-set-like nonlinear diffusion equations arising in plane curve evolution driven by curvature and anisotropy. The scheme is L and W 1,1 stable and the efficiency is given by its linearity. Incomplete Cholesky preconditioners are used for computing rapidly the linear systems which arise. Computational results related to anisotropic mean curvature motion in a plane are presented.


Preconditioned Conjugate Gradient Incomplete Factor Anisotropic Motion Preconditioned Conjugate Gradient Iteration Anisotropic Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M. (1993): Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123, 199–257MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Angenent, S.B., Gurtin, M.E. (1989): Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108, 323–391MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Bellettini, G., Paolini, M. (1996): Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25, 537–566MathSciNetMATHGoogle Scholar
  4. [4]
    Beneš, M. (2000): Anisotropic phase-field model with focused latent-heat release. In: Kenmochi, N. (ed.): Free boundary problems: theory and applications. II. (GAKUTO International Series. Mathematical Sciences and Applications, vol. 14). Gakkotosho, Tokyo, pp. 18–30Google Scholar
  5. [5]
    Beneš, M., Mikula, K. (1998): Simulations of anisotropic motion by mean curvature — comparison of phase field and sharp interface approaches. Acta Math. Univ. Comenian. (N.S.) 67, 17–42MathSciNetMATHGoogle Scholar
  6. [6]
    Caselles, V., Kimmel, R., Sapiro, G. (1997): Geodesic active contours. Internat. J. Comput. Vision 22, 61–79MATHCrossRefGoogle Scholar
  7. [7]
    Chen, Y.-G., Giga, Y., Goto, S. (1991): Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33, 749–786MathSciNetMATHGoogle Scholar
  8. [8]
    Deckelnick, K., Dziuk, G. (1995): Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72, 197–222MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Deckelnick, K., Dziuk, G. (1999): Discrete anisotropic curvature flow of graphs. M2AN Math. Model. Numer. Anal. 33, 1203–1222MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Deckelnick, K., Dziuk, G. (2000): Error estimates for a semi-implicit fully discrete finite element method for the mean curvature flow of graphs. Interfaces Free Bound. 2, 341–359MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Deckelnick, K., Dziuk, G. (2002): A fully discrete numerical scheme for weighted mean curvature flow. Numer. Math. 91, 423–452MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Dziuk, G. (1999): Discrete anisotropic curve shortening flow. SIAM J. Numer. Anal. 36, 1808–1830MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Elliott, CM., Paolini, M., Schätzle, R. (1996): Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean-curvature flow. Math. Models Methods Appl. Sci. 6, 1103–1118MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Evans, L.C., Spruck, J. (1991): Motion of level sets by mean curvature. I. J. Differential Geom. 33, 635–681MathSciNetMATHGoogle Scholar
  15. [15]
    Handlovičová, A., Mikula, K., Sarti, A. (1998): Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput. Visual. Sci. 1, 179–182MATHCrossRefGoogle Scholar
  16. [16]
    Handlovičová, A., Mikula, K., Sgallari, F. (2001): Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math., to appear. DOI 10.1007/s002110100374Google Scholar
  17. [17]
    Lin, C.-J., Moré, J.J. (1999): Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21, 24–45MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Meijerink, J.A., van der Vorst, H.A. (1977): An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162MathSciNetMATHGoogle Scholar
  19. [19]
    Mikula, K., Kačur, J. (1996): Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17, 1302–1327MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Mikula, K., Ševčovič, D. (2001): Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61, 1473–1501MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Nochetto, R., Paolini, M., Verdi, C. (1993): Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3, 711–723MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Osher, S., Sethian, J. (1988): Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Saad, Y. (1996): Iterative methods for sparse linear systems. PWS Publishing, Boston, MAMATHGoogle Scholar
  24. [24]
    Sapiro, G. (2001): Geometric partial differential equations and image analysis. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  25. [25]
    Schmidt, A. (1998): Approximation of crystalline dendrite growth in two space dimensions. Acta Math. Univ. Comenian. (N.S.) 67, 57–68MathSciNetMATHGoogle Scholar
  26. [26]
    Sethian, J.A. (1990): Numerical algorithm for propagating interfaces: Hamilton-Jacobi equations and conservation laws. J. Differential Geom. 31, 131–161MathSciNetMATHGoogle Scholar
  27. [27]
    Sethian, J.A. (1999): Level set methods and fast marching methods. Second edition. Cambridge University Press, CambridgeMATHGoogle Scholar
  28. [28]
    Walkington, N.J. (1996): Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33, 2215–2238MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • S. Corsaro
    • 1
  • V. De Simone
    • 2
  • A. Handlovičová
    • 3
  • K. Mikula
    • 3
  • F. Sgallari
    • 4
  1. 1.Center for Research on Parallel Computing and Supercomputers CPS-CNRComplesso Universitario Monte S. AngeloNapoliItaly
  2. 2.Università di Napoli “Federico II”NapoliItaly
  3. 3.Department of MathematicsSlovak University of TechnologyBratislavaSlovakia
  4. 4.Department of MathematicsUniversity of BolognaBolognaItaly

Personalised recommendations