Numerical methods for the Vlasov equation

  • F. Filbet
  • E. Sonnendrücker


In this paper, we give a fairly exhaustive review of the literature on numerical simulations of the Vlasov equation.We first recall the range of applications of the Vlasov equation and present the different approaches for the discretization.We briefly describe Lagrangian and Eulerian schemes and give a few numerical results comparing these methods.


Velocity Space Finite Volume Method Particle Method Vlasov Equation Finite Volume Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arakawa, A. (1966): Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. I. J. Comput, Phys. 1, 119–143. Reprinted: J. Comput. Phys. 135 (1997), 101-114MATHCrossRefGoogle Scholar
  2. [2]
    Bateson, W.B., Hewett, D.W. (1998): Grid and particle hydrodynamics: beyond hydrodynamics via fluid element particle-in-cell. J. Comput. Phys. 144, 358–378MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Besse, N., Filbet, E, Gutnic, M., Paun, I., Sonnendrücker, E.: An adaptive numerical method for the Vlasov equation based on a multiresolution analysis. In: Brezzi, F. et al. (eds.): Numerical mathematics and advanced applications, Proceedings of ENUMATH 2001. Springer-Verlag Italia, Milano, pp. 437–446Google Scholar
  4. [4]
    Birdsall, C.K., Langdon, A.B. (1985): Plasma physics via computer simulation. McGraw-Hill, New YorkGoogle Scholar
  5. [5]
    Book, D.L., Boris, J.P. (1973): Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69MATHCrossRefGoogle Scholar
  6. [6]
    Book, D.L., Boris, J.P., Hain, K. (1975): Flux-corrected transport. II. Generalizations of the method. J. Comput. Phys. 18, 248–283MATHCrossRefGoogle Scholar
  7. [7]
    Boris, J.P., Book, D.L. (1976): Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397–431MATHCrossRefGoogle Scholar
  8. [8]
    Byers, J.A., Killeen, J. (1970): Finite-difference methods for collisionless plasma models. In: Alder, B. et al. (eds.): Methods in computational physics, vol. 9. Plasma Physics. Academic Press, New York, pp. 259 ff.Google Scholar
  9. [9]
    Cheng, C.Z., Knorr, G. (1976): The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–348CrossRefGoogle Scholar
  10. [10]
    Cottet, G.-H., Raviart, P.-A. (1984): Particle methods for the one-dimensional Vlasov-Poisson equations. SIAM J. Numer. Anal. 21, 52–76MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Denavit, J. (1972): Numerical simulation of plasmas with periodic smoothing in phase space. J. Comput. Phys. 9, 75–98MATHCrossRefGoogle Scholar
  12. [12]
    Denton, R.E., Kotschenreuther, M. (1995): δ f of algorithm. J. Comput. Phys. 119, 283–294MATHCrossRefGoogle Scholar
  13. [13]
    Dimits, A.M., Lee, W.W. (1993): Partially linearized algorithms in gyrokinetic particle simulation. J. Comput. Phys. 107, 309–323MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Feix, M.R., Bertrand, P., Ghizzo, A. (1994): Eulerian codes for the Vlasov equation. In: Perthame, B. (ed.): Advances in kinetic theory and computing. (Series on Advances in Mathematics for Applied Sciences, vol. 22). World Scientific, Singapore, pp. 45–81Google Scholar
  15. [15]
    Filbet, E (2001): Convergence of a finite volume scheme for the Vlasov-Poisson system. SIAM J. Numer. Anal. 39, 1146–1169MathSciNetMATHCrossRefGoogle Scholar
  16. Filbet, E, Sonnendrücker, E., Bertrand, P. (2001): Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Fijalkow, E. (1999): A numerical solution to the Vlasov equation. Comput. Phys. Comm. 116, 319–328MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Ghizzo, A., Bertrand, P., Shoucri, M., Fijalkow, E., Feix, M.R. (1993): An Eulerian code for the study of the drift-kinetic Vlasov equation. J. Comput. Phys. 108, 105–121MATHCrossRefGoogle Scholar
  19. [19]
    Grant, EC., Feix, M.R. (1967): Fourier-Hermite solution of the Vlasov equation in the linearized limit. Phys. Fluids 10, 696–702CrossRefGoogle Scholar
  20. [20]
    Holloway, J.P. (1996): On numerical methods for Hamiltonian PDEs and a collocation method for the Vlasov-Maxwell equations. J. Comput. Phys. 129, 121–133MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Hu, G., Krommes, J.A. (1994): Generalized weighting schemes for δ f particle-simulation method. Phys. Plasmas 1, 863–874MathSciNetCrossRefGoogle Scholar
  22. [22]
    Klimas, A.J. (1983): A numerical method based on the Fourier-Fourier transform approach for modeling 1D electron plasma evolution. J. Comput. Phys. 50, 270–306MATHCrossRefGoogle Scholar
  23. [23]
    Klimas, AJ., Farrell, W.M. (1994): A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110, 150–163MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Klimas, A. (1987): A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68, 202–226MATHCrossRefGoogle Scholar
  25. [25]
    Nakamura, T., Yabe, T. (1999): Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys.Comm. 120, 122–154MATHCrossRefGoogle Scholar
  26. [26]
    Nunn, D. (1993): A novel technique for the numerical simulation of hot collision-free plasma; Vlasov hybrid simulation. J. Comput. Phys. 108, 180–196MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Schaeffer, J. (1998): Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension. SIAM J. Numer. Anal. 35, 1149–1175MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Schumer, J.W., Holloway, J.P. (1998): Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144, 626–661MATHCrossRefGoogle Scholar
  29. [29]
    Shoucri, M.M., Gagné, R.R.J. (1977): Numerical solution of a two-dimensional Vlasov equation. J. Comput. Phys. 25, 94–103MATHCrossRefGoogle Scholar
  30. [30]
    Shoucri, M., Knorr, G. (1974 ): Numerical integration of the Vlasov equation. J. Comput. Phys. 14, 84–92MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A. (1999): The semi-Lagrangian method for the numerical resolution of Vlasov equation. J. Comput. Phys. 149, 201–220MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    Sonnendrücker, E., Barnard, J.J., Friedman, A., Grote, D.P., Lund, S.M. (2001): Simulation of heavy ion beams with a semi-Lagrangian Vlasov solver. Nuclear Instruments Methods Phys. Res. A 464, 475–476Google Scholar
  33. [33]
    Staniforth, A., Côté, J. (1991): Semi-Lagangian integration schemes for atmospheric models — a review. Monthly Weather Rev. 119, 2206–2223CrossRefGoogle Scholar
  34. [34]
    Victory, H.D., Jr., Allen, J.E. (1991): The convergence theory of particle-in-cell methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28, 1207–1241MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    Zaki, S.I., Gardner, L.R.T., Boyd, T.J.M. (1988): A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • F. Filbet
    • 1
  • E. Sonnendrücker
    • 1
  1. 1.IRMAUniversité Louis PasteurStrasbourgFrance

Personalised recommendations