Skip to main content

Numerical methods for the Vlasov equation

  • Conference paper
Numerical Mathematics and Advanced Applications

Summary

In this paper, we give a fairly exhaustive review of the literature on numerical simulations of the Vlasov equation.We first recall the range of applications of the Vlasov equation and present the different approaches for the discretization.We briefly describe Lagrangian and Eulerian schemes and give a few numerical results comparing these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, A. (1966): Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. I. J. Comput, Phys. 1, 119–143. Reprinted: J. Comput. Phys. 135 (1997), 101-114

    Article  MATH  Google Scholar 

  2. Bateson, W.B., Hewett, D.W. (1998): Grid and particle hydrodynamics: beyond hydrodynamics via fluid element particle-in-cell. J. Comput. Phys. 144, 358–378

    Article  MathSciNet  MATH  Google Scholar 

  3. Besse, N., Filbet, E, Gutnic, M., Paun, I., Sonnendrücker, E.: An adaptive numerical method for the Vlasov equation based on a multiresolution analysis. In: Brezzi, F. et al. (eds.): Numerical mathematics and advanced applications, Proceedings of ENUMATH 2001. Springer-Verlag Italia, Milano, pp. 437–446

    Google Scholar 

  4. Birdsall, C.K., Langdon, A.B. (1985): Plasma physics via computer simulation. McGraw-Hill, New York

    Google Scholar 

  5. Book, D.L., Boris, J.P. (1973): Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69

    Article  MATH  Google Scholar 

  6. Book, D.L., Boris, J.P., Hain, K. (1975): Flux-corrected transport. II. Generalizations of the method. J. Comput. Phys. 18, 248–283

    Article  MATH  Google Scholar 

  7. Boris, J.P., Book, D.L. (1976): Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397–431

    Article  MATH  Google Scholar 

  8. Byers, J.A., Killeen, J. (1970): Finite-difference methods for collisionless plasma models. In: Alder, B. et al. (eds.): Methods in computational physics, vol. 9. Plasma Physics. Academic Press, New York, pp. 259 ff.

    Google Scholar 

  9. Cheng, C.Z., Knorr, G. (1976): The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–348

    Article  Google Scholar 

  10. Cottet, G.-H., Raviart, P.-A. (1984): Particle methods for the one-dimensional Vlasov-Poisson equations. SIAM J. Numer. Anal. 21, 52–76

    Article  MathSciNet  MATH  Google Scholar 

  11. Denavit, J. (1972): Numerical simulation of plasmas with periodic smoothing in phase space. J. Comput. Phys. 9, 75–98

    Article  MATH  Google Scholar 

  12. Denton, R.E., Kotschenreuther, M. (1995): δ f of algorithm. J. Comput. Phys. 119, 283–294

    Article  MATH  Google Scholar 

  13. Dimits, A.M., Lee, W.W. (1993): Partially linearized algorithms in gyrokinetic particle simulation. J. Comput. Phys. 107, 309–323

    Article  MathSciNet  MATH  Google Scholar 

  14. Feix, M.R., Bertrand, P., Ghizzo, A. (1994): Eulerian codes for the Vlasov equation. In: Perthame, B. (ed.): Advances in kinetic theory and computing. (Series on Advances in Mathematics for Applied Sciences, vol. 22). World Scientific, Singapore, pp. 45–81

    Google Scholar 

  15. Filbet, E (2001): Convergence of a finite volume scheme for the Vlasov-Poisson system. SIAM J. Numer. Anal. 39, 1146–1169

    Article  MathSciNet  MATH  Google Scholar 

  16. Filbet, E, Sonnendrücker, E., Bertrand, P. (2001): Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187

    Article  MathSciNet  MATH  Google Scholar 

  17. Fijalkow, E. (1999): A numerical solution to the Vlasov equation. Comput. Phys. Comm. 116, 319–328

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghizzo, A., Bertrand, P., Shoucri, M., Fijalkow, E., Feix, M.R. (1993): An Eulerian code for the study of the drift-kinetic Vlasov equation. J. Comput. Phys. 108, 105–121

    Article  MATH  Google Scholar 

  19. Grant, EC., Feix, M.R. (1967): Fourier-Hermite solution of the Vlasov equation in the linearized limit. Phys. Fluids 10, 696–702

    Article  Google Scholar 

  20. Holloway, J.P. (1996): On numerical methods for Hamiltonian PDEs and a collocation method for the Vlasov-Maxwell equations. J. Comput. Phys. 129, 121–133

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, G., Krommes, J.A. (1994): Generalized weighting schemes for δ f particle-simulation method. Phys. Plasmas 1, 863–874

    Article  MathSciNet  Google Scholar 

  22. Klimas, A.J. (1983): A numerical method based on the Fourier-Fourier transform approach for modeling 1D electron plasma evolution. J. Comput. Phys. 50, 270–306

    Article  MATH  Google Scholar 

  23. Klimas, AJ., Farrell, W.M. (1994): A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110, 150–163

    Article  MathSciNet  MATH  Google Scholar 

  24. Klimas, A. (1987): A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68, 202–226

    Article  MATH  Google Scholar 

  25. Nakamura, T., Yabe, T. (1999): Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys.Comm. 120, 122–154

    Article  MATH  Google Scholar 

  26. Nunn, D. (1993): A novel technique for the numerical simulation of hot collision-free plasma; Vlasov hybrid simulation. J. Comput. Phys. 108, 180–196

    Article  MathSciNet  MATH  Google Scholar 

  27. Schaeffer, J. (1998): Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension. SIAM J. Numer. Anal. 35, 1149–1175

    Article  MathSciNet  MATH  Google Scholar 

  28. Schumer, J.W., Holloway, J.P. (1998): Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144, 626–661

    Article  MATH  Google Scholar 

  29. Shoucri, M.M., Gagné, R.R.J. (1977): Numerical solution of a two-dimensional Vlasov equation. J. Comput. Phys. 25, 94–103

    Article  MATH  Google Scholar 

  30. Shoucri, M., Knorr, G. (1974 ): Numerical integration of the Vlasov equation. J. Comput. Phys. 14, 84–92

    Article  MathSciNet  MATH  Google Scholar 

  31. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A. (1999): The semi-Lagrangian method for the numerical resolution of Vlasov equation. J. Comput. Phys. 149, 201–220

    Article  MathSciNet  MATH  Google Scholar 

  32. Sonnendrücker, E., Barnard, J.J., Friedman, A., Grote, D.P., Lund, S.M. (2001): Simulation of heavy ion beams with a semi-Lagrangian Vlasov solver. Nuclear Instruments Methods Phys. Res. A 464, 475–476

    Google Scholar 

  33. Staniforth, A., Côté, J. (1991): Semi-Lagangian integration schemes for atmospheric models — a review. Monthly Weather Rev. 119, 2206–2223

    Article  Google Scholar 

  34. Victory, H.D., Jr., Allen, J.E. (1991): The convergence theory of particle-in-cell methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28, 1207–1241

    Article  MathSciNet  MATH  Google Scholar 

  35. Zaki, S.I., Gardner, L.R.T., Boyd, T.J.M. (1988): A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Filbet, F., Sonnendrücker, E. (2003). Numerical methods for the Vlasov equation. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_43

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics