Advertisement

An adaptive numerical method for the Vlasov equation based on a multiresolution analysis

  • N. Besse
  • F. Filbet
  • M. Gutnic
  • I. Paun
  • E. Sonnendrücker
Conference paper

Summary

Simulation of some problems in plasma physics or for high intensity beams requires the numerical resolution of the Vlasov equation on a mesh of phase space which doubles the number of dimensions. In order to optimize the number of mesh points where the distribution is computed, we developed a Vlasov solver using a multi resolution analysis where the distribution function is expanded on a wavelet basis spanning several scales. The idea of the method is to use a semi-Lagrangian type algorithm, where the characteristics are followed backwards, with time splitting between position and velocity advance. The interpolation points are chosen adaptively so as to put the computational effort where necessary. Our initial results using this method are presented.

Keywords

Prediction Operator Coarse Mesh Wavelet Decomposition Mesh Point Wavelet Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bertoluzza, S. (1997): An adaptive collocation method based on interpolating wavelets. In: Dahmen, W. et al. (eds.): Multiscale wavelet methods for partial differential equations. (Wavelet Analysis and its Applications, vol. 6). Academic Press, San Diego, CA, pp. 109–135CrossRefGoogle Scholar
  2. [2]
    Cheng, C.-Z., Knorr, G. (1976): The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351CrossRefGoogle Scholar
  3. [3]
    Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. PII: S0025-5718(01)01391-6Google Scholar
  4. [4]
    Feix, M.R., Bertrand, P., Ghizzo, A. (1994): Eulerian codes for the Vlasov equation. In: Perthame, B. (ed.): Advances in kinetic theory and computing: selected papers. (Series on Advances in Mathematics for Applied Sciences, vol 22). World Scientific, Singapore, pp. 45–81Google Scholar
  5. [5]
    Filbet, E, Sonnendrücker, E. (2003): Numerical methods for the Vlasov equation. In: Brezzi, E et al. (eds.): Numerical mathematics and advanced applications, Proceedings of ENUMATH 2001. Springer-Verlag Italia, Milano, pp. 459–468Google Scholar
  6. [6]
    Ghizzo, A., Bertrand, P., Shoucri, M., Johnston, T.W, Filjakow, E., Feix, M.R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. J. Comput. Phys. 90, 431–457MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Griebel, M., Koster, E (2000): Adaptive wavelet solvers for the unsteady incompressible Navier-Stokes equations. In: Málek, J. et al. (eds.): Advances in mathematical fluid mechanics. Springer, Berlin, pp. 67–118CrossRefGoogle Scholar
  8. [8]
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Sonnendrücker, E., Barnard, J.J., Friedman, A., Grote, D.P., Lund, S.M. (2001): Simulation of heavy ion beams with a semi-Lagrangian Vlasov solver. Nuclear Instruments Methods Phys. Res. A 464, 653–661CrossRefGoogle Scholar
  10. [10]
    Zalesak, S.T. (1979): Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • N. Besse
    • 1
  • F. Filbet
    • 2
  • M. Gutnic
    • 2
  • I. Paun
    • 2
  • E. Sonnendrücker
    • 2
  1. 1.CEABruyères-le-ChâtelFrance
  2. 2.IRMAUniversité Louis PasteurStrasbourgFrance

Personalised recommendations