Advertisement

High-order central WENO schemes for 1D Hamilton-Jacobi equations

  • S. Bryson
  • D. Levy
Conference paper

Summary

In this paper we present the first fifth-order central scheme for approximating solutions of one-dimensional Hamilton-Jacobi equations. The main ingredient in this scheme is a central weighted essentially non-oscillatory reconstruction in space. The expected behavior of the scheme is demonstrated in several numerical examples.

Keywords

Central Scheme Nonoscillatory Scheme WENO Reconstruction Mesh Ratio Smoothness Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barles, G. (1994): Solution de viscosité des équations de Hamilton-Jacobi, Springer, ParisGoogle Scholar
  2. [2]
    Bryson, S., Levy, D. (2002): Central schemes for multi-dimensional Hamilton-Jacobi equations. SIAM J. Sci. Comput., to appearGoogle Scholar
  3. [3]
    Crandall, M.G., Evans, L.C., Lions, P.-L. (1984): Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282, 487–502MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Crandall, M.G., Ishii, H., Lions, P.-L. (1992): User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27, 1–67MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Crandall, M.G., Lions, P.-L. (1983): Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Gottlieb, S., Shu, C.-W., Tadmor, E. (2001): Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S. (1987): Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71, 231–303MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Kružkov, S.N. (1964): The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables. (Russian) Dokl. Akad. Nauk SSSR 155, 743–746; translated as Soviet Math. Dokl. 5, 493–496Google Scholar
  9. [9]
    Jiang, G.-S., Peng, D. (2000): Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Jiang, G.-S., Shu, C.-W. (1996): Efficient implementation of weighted ENO schemes. J. Comput, Phys. 126, 202–228MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Kurganov, A., Noelle, S., Petrova, G. (2001): Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Kurganov, A., Tadmor, E. (2000): New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys. 160, 720–742MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Levy, D., Puppo, G., Russo, G. (1999): Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal. 33, 547–571MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Levy, D., Puppo, G., Russo, G. (2000): Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Lin, C.-T., Tadmor, E. (2001): L 1-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math. 87, 701–735MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Lin, C.-T., Tadmor, E. (2000): High-resolution nonoscillatory central schemes for approximate Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2163–2186MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Lions, P.-L. (1982): Generalized solutions of Hamilton-Jacobi equations. Pitman, LondonMATHGoogle Scholar
  18. [18]
    Liu, X.-D., Osher, S., Chan, T. (1994): Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Nessyahu, H., Tadmor, E. (1990): Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Osher, S., Sethian, J. (1988): Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Osher, S., Shu, C.-W. (1991): High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28, 907–922MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Shi, J., Hu, C., Shu, C.-W. (2002): A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • S. Bryson
    • 1
  • D. Levy
    • 2
  1. 1.Program in Scientific Computing/Computational MathematicsStanford University and the NASA Advanced Supercomputing Division, NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations