Skip to main content

Functional approximation and estimation for latent variable systems

  • Conference paper
Numerical Mathematics and Advanced Applications
  • 1175 Accesses

Summary

Many models have been suggested in statistics and in econometrics for describing the behavior of latent random financial variables suspected to be behind volatility. Despite all the research done, this area of study remains an excellent ground for experiments on the design and analysis of stochastic systems aimed at modellingnon-linear and non-stationary processes. While it is a common strategy to rely on assumptions about the probability distributions and functions involved in representing volatility dynamics, we contribute to a shift of the emphasis toward a more generally model-free perspective, also seen as non-parametric in statistical inference terms. In pursuing this direction, we attempt to address the use of methodologies so far not exploited very much in this context. Thus, our focus is on functional approximation and semi-parametric estimation, by means of methods such as adaptive wavelet basis representations and related computational sytems. In our applications, the function dictionaries described and the algorithms implemented help in identifying and estimating the behavior of the Nikkei financial stock index, thus improving the feature detection power. From the methodological standpoint side, signal decomposition techniques such as independent component and multire solution analyses are shown to be effective for adaptive learning when used in a combined fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abry, P., Flandrin, P., Taqqu, M. S., Veitch, D. (2000): Wavelets for the analysis, estimation, and synthesis of scaling data. In: Park, K., Willinger, W. (eds.): Self-similar network traffic and performance evaluation. Wiley, New York, pp. 39–88

    Chapter  Google Scholar 

  2. Amari, S.-I. (1998): ICA for temporally correlated signals. Learning algorithms. In: Proceedings of the first international workshop on indipendent component analysis and blind signal separation. Aussois, France, pp. 13–18

    Google Scholar 

  3. Andersen, T., Bollerslev, T. (1997): Intraday periodicity and volatility persistence in financial markets. J. Empirical Finance 4, 115–158

    Article  Google Scholar 

  4. Andersen, T., Bollerslev, T. (1997): Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns. J. Finance 52, 975–1005

    Article  Google Scholar 

  5. Bruce, A. G., Gao, H. Y. (1994): S+WAVELETS users manual. MathSoft Inc., Seattle, WA

    Google Scholar 

  6. Capobianco, E. (1999): Wavelets for high frequency financial time series. In: Berk, K., Pourahmadi, M. (eds.): Models, predictions and computing. Interface Foundation of North America, Fairfax Station, VA, pp. 373–377

    Google Scholar 

  7. Capobianco, E. (1999): Statistical analysis of financial volatility by wavelet shrinkage. Methodol. Comput. Appl. Probab. 1(4), 423–443

    Article  MATH  Google Scholar 

  8. Cardoso, J.-F. (1989): Source separation using higher order moments. In: International conference on acoustics, speech, and signal processing. IEEE, Piscataway, NJ, pp. 2109–2112

    Chapter  Google Scholar 

  9. Cardoso, J.-F., Souloumiac, A. (1993): Blind beamforming for non-Gaussian signals. IEEE Proc. Part F Radar signal Process. 140, 362–370

    Article  Google Scholar 

  10. Chen, S., Donoho D., Saunders, M. A. (2001): Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159

    Article  MathSciNet  MATH  Google Scholar 

  11. Coifman, R. R., Wickerhauser, M. V. (1992): Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theory 38, 713–718

    Article  MATH  Google Scholar 

  12. Comon, P. (1994): Independent component analysis — a new concept? Signal Process. 36, 287–314

    Article  MATH  Google Scholar 

  13. Daubechies. L (1992): Ten lectures on wavelets. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  14. Donoho, D. (2001): Sparse components of images and optimal atomic decompositions. Constr. Approx. 17, 353–382

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho, D., Johnstone, I. M. (1994): Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoho, D., Johnstone, I. M. (1995): Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90, 1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho, D., Johnstone, I. M. (1998): Minimax estimation via wavelet shrinkage. Annals Statist. 26, 879–921

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, H. Y. (1997): Wavelet shrinkage estimates for heteroscedastic regression models. Technical Repdort. MathSoft Inc., Seattle, WA

    Google Scholar 

  19. Hardle, W, Kerkyacharian, G., Picard, D., Tsybakov, A. (1998): Wavelets, approximation, and statistical applications. (Lecture Notes in Statistics, vol. 129). Springer, New York

    Book  Google Scholar 

  20. Hyvarinen, A., Oja, E. (1997):A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492

    Article  Google Scholar 

  21. Hyvarinen, A. (1999): Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural. Networks 10, 626–634

    Article  Google Scholar 

  22. Jaggi, S., Karl, W. C., Mallat, S., Willsky, A. S. (1998): High resolution pursuit for feature extraction. Appl. Comput. Harmon. Anal. 5, 428–449

    Article  MATH  Google Scholar 

  23. Johnstone, I. M., Silverman, B. W. (1997): Wavelet threshold estimators for data with correlated noise. J. Royal Statist. Soc. Ser. B 59, 319–351

    Article  MathSciNet  MATH  Google Scholar 

  24. Krim, H., Pesquet, J.-C. (1995): On the statistics of best bases criteria. In: Antoniadis, A., Oppenheim, G. (eds.), Wavelets and statistics. (Lecture Notes in Statistics, vol. 103). Springer, New York, pp. 193–207

    Chapter  Google Scholar 

  25. Lewicki, M. S., Sejnowski, T. J. (2000): Learning overcomplete representations. Neural Comput. 12, 337–366

    Article  Google Scholar 

  26. Mallat, S. (1989): Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Amer. Math. Soc. 315, 69–87

    MathSciNet  MATH  Google Scholar 

  27. Mallat, S. (1998):A wavelet tour of signal processing. Academic Press, San Diego, CA

    MATH  Google Scholar 

  28. Mallat, S., Zhang, Z. (1993): Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415

    Article  MATH  Google Scholar 

  29. Meyer, I. (1993): Wavelets. Algorithms & applications. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  30. Mikosch, T., Stâricâ, C. (2000): Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427–1451

    Article  MathSciNet  MATH  Google Scholar 

  31. von Sachs, R., MacGibbon, B. (2000): Non-parametric curve estimation by wavelet thresholding with locally stationary errors. Scand. J. Statist. 27, 475–499

    Article  MathSciNet  MATH  Google Scholar 

  32. Serroukh, A., Walden, A. T., Percival, D. B. (2000): Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series. J. Amer. Statist. Assoc. 95, 184–196

    Article  MathSciNet  MATH  Google Scholar 

  33. Zibulevsky, M., Pearlmutter, B. A. (2001): Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13, 863–882

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Capobianco, E. (2003). Functional approximation and estimation for latent variable systems. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_37

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics