Energy estimates for shell problems

  • C. Lovadina
Conference paper


We consider the behavior of a general Koiter shell in the framework of linear elasticity. We investigate the asymptotics (for the thickness tending to zero) of the energy functional and of the percentage of the energy which is stored in the bending term. Such an analysis is motivated by the need to understand better how to design a reliable finite element scheme for arbitrary thin shell.


Elastic Energy Energy Estimate Problem Order Finite Element Scheme General Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnold, D. N., Brezzi, E (1997): Locking-free finite element methods for shells. Math. Comp. 66, 1–14MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Baiocchi, C., Lovadina, C. (2002): A shell classification by interpolation. Math. Models Methods Appl. Sci. 12, 1359–1380MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Baiocchi, C., Savaré, G. (1994): Singular perturbation and interpolation. Math. Models Methods Appl. Sci. 4, 557–570MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Bathe, K.-J. (1996): Finite element procedures. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  5. [5]
    Bathe, K.-J., Iosilevich, A., Chapelle, D. (2000): An evaluation of the MITC shell elements. Comput. & Structures 75, 1–30MathSciNetCrossRefGoogle Scholar
  6. [6]
    Beirão da Veiga, L.: Theoretical and numerical study of shell intermediate states on particular toroidal and cylindrical problems. Istit. Lombardo Accad. Sci. Lett. Rend. A, to appearGoogle Scholar
  7. [7]
    Beirão da Veiga, L.: Uniform error estimates for a class of intermediate cylindrical shell problems. Numer. Math., to appearGoogle Scholar
  8. [8]
    Bergh, J., Löfström, J. (1976): Interpolation spaces. An introduction. Springer, BerlinGoogle Scholar
  9. [9]
    Bernadou, M., Ciarlet, P. G. (1976): Sur l'ellipticité du modèle linéaire de W. T. Koiter. In: Glowinski, R., Lions, J.-L. (eds): Computing methods in applied sciences and engineering. Part I. (Lecture Notes in Economics and Mathematical Systems, vol. 134). Springer, Berlin, pp. 89–136CrossRefGoogle Scholar
  10. [10]
    Blouza, A., Brezzi, E, Lovadina, C. (1999): A New classification for shell problems. Technical Report IAN-CNR-1128. Istituto di Analisi Numerica — Consiglio Nazionale delle Richerche, PaviaGoogle Scholar
  11. [11]
    Blouza, A., Brezzi, E, Lovadina, C. (1999): Sur la classification des coques linéairement élastiques, C. R. Acad. Sci. Paris Sér, I Math. 328, 831–836MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Blouza, A., Le Dret, H. (1999): Existence and uniqueness for the linear Koiter model for shells with little regularity. Quart. Appl. Math. 57, 317–337MathSciNetMATHGoogle Scholar
  13. [13]
    Chapelle, D. (2001): Some new results and current challenges in the finite element analysis of shells. In: Iserles, A. (ed.): Acta Numerica 2001. Vol. 10. Cambridge University Press, Cambridge, pp. 215–250Google Scholar
  14. [14]
    Chapelle, D., Bathe, K.-J. (1998): Fundamental considerations for the finite element analysis of shell structures. Comput. & Structures 66, 19–36MATHCrossRefGoogle Scholar
  15. [15]
    Chapelle, D., Stenberg, R. (1999): Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal. 36, 32–73MathSciNetCrossRefGoogle Scholar
  16. [16]
    Chenais, D., Paumier, J. C. (1994): On the locking phenomenon for a class of elliptic problems. Numer. Math. 67, 427–440MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Ciarlet, P. G. (1998): Introduction to linear shell theory. (Series in Applied Mathematics, vol. 1). Gauthier-Villars, ParisMATHGoogle Scholar
  18. [18]
    Ciarlet, P. G. (2001): Mathematical modelling of linearly elastic shells. In: Iserles, A. (ed.): Acta Numerica 2001. Cambridge University Press, Cambridge, pp. 103–214Google Scholar
  19. [19]
    Lee, P.-S., Bathe, K.-J. (2002): On the asymptotic behavior of shell structures and the evaluation in finite element solutions. Comput. & Structures 80, 235–255CrossRefGoogle Scholar
  20. [20]
    Lions, J.-L., Peetre, J. (1964): Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. No. 19, 5–68MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Lions, J.-L., Sanchez-Palencia, E. (1996): Problèmes sensitifs et coques élastiques minces. In: Cea, J. et al. (eds.): Partial differential equations and functional analysis. Birkhäuser Boston, Boston, MA, pp. 207–220CrossRefGoogle Scholar
  22. [22]
    Piila, J., Leino, Y., Ovaskainen, O., Pitkäranta, J. (1995): Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comput. Methods Appl. Mech. Engrg. 128, 81–121MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Sanchez-Palencia, E. (1989): Statique et dynamique des coques minces. II. Cas de flexion pure inhibée. Approximation membranaire. C. R. Acad. Sci. Paris Sér. I Math. 309, 531–537MathSciNetMATHGoogle Scholar
  24. [24]
    Sanchez-Palencia, E. (1989): Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée, C. R. Acad. Sci. Paris Sér. I Math. 309, 411–417MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • C. Lovadina
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations