Advertisement

PSRI schemes for shells: a benchmark study

  • C. Chinosi
  • G. Sacchi
Conference paper

Summary

The aim of this paper is to study experimentally the accuracy of the partial selective reduced integration (PSRI) scheme, for the numerical solution of the classical 2D Naghdi shell model. In this work we consider a bending dominated shell as a benchmark problem and we analyze the convergence properties of the PSRI finite elements as well as their behavior in the presence of the locking phenomenon. Moreover we study the computed solutions in order to evaluate their dependence on different types of mesh, in particular if boundary layers appear.

Keywords

Mixed Scheme Uniform Mesh Finite Element Approximation Mixed Finite Element Finite Element Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, D.A., Brezzi, F. (1997): Locking-free finite element methods for shells. Math. Comp. 66, 1–14MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bathe, K.-J., Iosilevich. A., Chapelle, D. (2000): An evaluation of the MITC shell elements. Comput. & Structures 75, 1–30MathSciNetCrossRefGoogle Scholar
  3. [3]
    Blouza, A., Brezzi, F., Lovadina, C. (1999): Sur la classification des coques linéarement élastiques. C.R. Acad. Sci. Paris Sér. I Math. 328, 831–836MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Chinosi, C, Sacchi, G. (2001): Numerical approximation of bending dominated shells using P.S.R.I. schemes. Technical Report IAN-CNR Istituto di Analisi Numerica— Consiglio Nazionale delle Richerche, Pavia, n.-1226Google Scholar
  5. [5]
    Ciarlet, P.G. (1998): Introduction to linear shell theory. North-Holland, AmsterdamMATHGoogle Scholar
  6. [6]
    Naghdi, P.M. (1972): The theory of shells and plates. In: Truesdell, C. (ed.): (Handbuch der Physik, Bd. VIa.2.) Springer, Berlin, pp. 425–640Google Scholar
  7. [7]
    Pitkäranta, J., Leino, Y., Ovaskainen, O., Piila, J. (1995): Shell deformation states and the finite element method: a benchmark study of cylindrical shells. Comput. Methods Appl. Mech. Engrg. 128, 81–121MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • C. Chinosi
    • 1
  • G. Sacchi
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie AvanzateUniversità del Piemonte OrientaleAlessandriaItaly
  2. 2.IMATI-CNRPaviaItaly

Personalised recommendations