A shell model allowing folds

  • S. Anicic


Starting from the Kirchhoff-Love model, we formulate a new thin shell model in linearized elasticity which can be applied to folded shells. The presence of a fold is solely characterized by an additonal constraint in the variational space. The strain energy contains a membrane-bending coupling term and a new bending strain tensor χαβ(u) which measures the infinitesimal variations of the principal curvatures of a surface. We establish a uniqueness and existence result for shells whose midsurfaces are of class G 1 , which includes curvature discontinuities. We give explicit relative error estimates, which are of order h 2 ,on the difference between the solution of our model and the solution of the Kirchhoff-Love shell model.


Shell Model Principal Curvature Covariant Component Christoffel Symbol Vector Displacement Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Acharya, A. (2000): A nonlinear generalization of the Koiter-Sanders-Budiansky bending strain measure. Int. J. Solids Structures 37, 5517–5528MATHCrossRefGoogle Scholar
  2. [2]
    Akian, J.-L. (1999): Analyse asymptotique des jonctions de coques en flexion. C.R. Acad. Sci. Paris Sér. II. Fasc, b Méch. Phys. Astronom. 327, 1129–1132MATHGoogle Scholar
  3. [3]
    Anicic, S. (2001): Du modèle de Kirchhoff-Love exact à un modèle de coque mince et à un modèle de coque pliée. Ph.D. thesis. Université Joseph Fourier, GrenobleGoogle Scholar
  4. [4]
    Anicic, S., Léger, A. (1999): Formulation bidimensionnelle exacte du modèle de coque 3D de Kirchhoff-Love. C.R. Acad. Sci. Paris Sér L Math. 329, 741–746MATHCrossRefGoogle Scholar
  5. [5]
    Blouza, A. (1996): Etude de quelques problèmes de coques en élasticité. Ph.D. thesis. Université Pierre et Marie Curie — Paris 6, ParisGoogle Scholar
  6. [6]
    Blouza, A., Le Dret, H. (1994): Sur le lemme du mouvement rigide. C.R. Acad. Sci. Paris, Sér. I. Math. 319, 1015–1020MATHGoogle Scholar
  7. [7]
    Budiansky, B., Sanders, J.L. (1963): On the “best” first-order linear shell theory. In: Alexander, J.M. et al. (eds.): Progress in applied mechanics: the Prager anniversary volume. Macmillan, New York, pp. 129–140Google Scholar
  8. [8]
    Koiter, W.T. (1970): On the foundations of the linear theory of thin elastic shells. I, II. Nederl. Akad. Wetensch. Proc. Ser. B 73, 169–182, 183–195MathSciNetMATHGoogle Scholar
  9. [9]
    Le Dret, H. (1989): Folded plates revisited. Comput. Mech. 5, 345–365MATHCrossRefGoogle Scholar
  10. [10]
    Sanders, J.L. (1959): An improved first-approximation theory for thin shells. Technical Report R-24. NASA, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • S. Anicic
    • 1
  1. 1.LMC-IMAGUniversité Joseph FourierGrenobleFrance

Personalised recommendations