Advertisement

Perfectly matched layers in transmission lines

  • G. Hebermehl
  • F.-K. Hübner
  • R. Schlundt
  • T. Tischler
  • H. Zscheile
  • B. Heinrich
Conference paper

Summary

The field distribution at the ports of the transmission line structure is computed by applying Maxwell’s equations to the structure and solving a sequence of eigenvalue problems of modified matrices. A new strategy is described which allows the application of the method, first developed for microwave structures, to optoelectronic devices.

Keywords

Eigenvalue Problem Transmission Line Perfectly Match Layer Absorb Boundary Condition Coplanar Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beilenhoff, K., Heinrich, W., Hartnagel, H.L. (1992): Improved finite-difference formulation in frequency domain for three-dimensional scattering problems. IEEE Trans. Microwave Theory Tech. 40, 540–546CrossRefGoogle Scholar
  2. [2]
    Christ, A., Hartnagel, H.L. (1987): Three-dimensional finite-difference method for the analysis of microwave-device embedding. IEEE Trans. Microwave Theory Tech. 35, 688–696CrossRefGoogle Scholar
  3. [3]
    Davis, T.A., Duff, I.S. (1999): A combined unifrontal/multifrontal method for unsynometric sparse matrices. ACM Trans. Math. Software 25, 1–20MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Hebermehl, G., Hübner, F.-K., Schlundt, R., Tischler, T., Zscheile, H., Heinrich, W. (2001): Numerical simulation for lossy microwave transmission lines including PML. In: van Rienen et al. (eds.): Scientific computing in electrical engineering (Lecture Notes in Computational Science and Engineering, vol. 18). Springer, Berlin, pp. 267–275CrossRefGoogle Scholar
  5. [5]
    Hebermehl, G., Hübner, F.-K., Schlundt, R., Tischler, T, Zscheile, H., Heinrich, W. (2001): On the computation of eigenmodes for lossy microwave transmission lines including perfectly matched layer boundary conditions. COMPEL 20, 948–964MATHCrossRefGoogle Scholar
  6. [6]
    Lehoucq, R.B. (1995): Analysis and Implementation of an implicitly restarted Amoldi iteration. Technical Report TR 95-13. Department of Computational and Applied Mathematics, Rice University, Houston, TXGoogle Scholar
  7. [7]
    Sacks, Z.S., Kingsland, D.M., Lee, R., Lee, J.-F. (1995): A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas and Propagation 43, 1460–1463CrossRefGoogle Scholar
  8. [8]
    Sorensen, D.C. (1992): Implicit application of polynomial filters in a k-step Amoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Tischler, T., Heinrich, W. (2000): The perfectly matched layer as lateral boundary in finite-difference transmission-line analysis. In: 2000 IEEE MTT-S international microwave symposium digest, vol. 1. IEEE, Piscataway, NJ, pp. 121–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • G. Hebermehl
    • 1
  • F.-K. Hübner
    • 2
  • R. Schlundt
    • 2
  • T. Tischler
    • 3
  • H. Zscheile
    • 3
  • B. Heinrich
    • 4
  1. 1.Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  3. 3.Ferdinand-Braun-Institut für HöchstfrequenztechnikBerlinGermany
  4. 4.Technische Universität ChemnitzChemnitzGermany

Personalised recommendations