A boundary integral formulation of antenna problems suitable for nodal-based wavelet approximations

  • M. Costabel
  • C. Safa
Conference paper


The electric field integral equation on an open surface is transformed into a strongly elliptic system using Hodge decomposition on the surface. The resulting system of pseudodifferential equations is discretized by finite elements using nodal-based wavelet bases. The necessary function spaces are described and results about matrix compression, stability, and convergence are presented.


Boundary Element Method Pseudodifferential Operator Open Surface Hodge Decomposition Refinement Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bendali, A. (1984): Numerical analysis of the exterior boundary value problem for time-harmonic Maxwell equations by a boundary finite element method. II. The discrete problem. Math. Comp. 43, 47–68MathSciNetMATHGoogle Scholar
  2. [2]
    Buffa, A., Costabel, M., Schwab, C. (2002): Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92, 679–710MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C. (2001): Boundary element methods for Maxwell equations in Lipschitz domains. Numer. Math., to appearGoogle Scholar
  4. [4]
    Costabel, M., Safa, C. (2003): Wavelet approximation of an antenna problem, in preparationGoogle Scholar
  5. [5]
    Dahmen, W., Stevenson, R. (1999): Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 319–352MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Loison, R. (2000): Utilisation de l’analyse multirésolution dans la méthode des moments. Application à la modélisation de réseaux d’antennes imprimées. Ph.D. thesis. Institut National des Sciences Appliquées, RennesGoogle Scholar
  7. [7]
    Safa, C. (2001): Résolution rapide d’équations intégrales pour un problème d’antennes par des méthodes d’ondelettes. Ph.D. thesis. Université de Rennes I, RennesGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • M. Costabel
    • 1
  • C. Safa
    • 1
  1. 1.IRMARRennesFrance

Personalised recommendations