Advertisement

FI2TD schemes for magnetic field simulations: new formulations and algorithmic improvements

  • M. Clemens
  • T. Weiland
Conference paper

Summary

Finite Integration Implicit Time Domain (FI2TD) methods are designed for the calculation of transient magnetic fields and are based on the Finite Integration Technique. To improve the geometric modeling capabilities of these methods while maintaining computationally efficient structured orthogonal grids, the Conformal Finite Integration Technique was introduced. A magnetic field formulation based on a reduced magnetic vector potential formulation also allows an improved geometrical modeling of excitation coils while at the same time reducing the computational work for FI2TD simulation s at typically low accuracy requirements. A new generalized linearization formulation is presented for the simulation of nonlinear ferromagnetic material behavior, which includes the standard linearization schemes as special cases and enables us to derive hybrid nonlinear iteration schemes.

Keywords

Finite Difference Time Domain Orthogonal Grid Eddy Current Test Generalize Linearization Method Local Grid Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bíro, O., Preis, K. (1990): Finite element analysis of 3D eddy currents. IEEE Trans. Magnetics 26, 418–423CrossRefGoogle Scholar
  2. [2]
    Bíro, O., Preis, K., Richter, K.R. (1995): Various FEM formulations for the calculation of transient 3D eddy currents in nonlinear media. IEEE Trans. Magnetics 31, 1307–1312CrossRefGoogle Scholar
  3. [3]
    Clemens, M., Weiland, T. (1999): Transient eddy current calculation with the FI-method. IEEE Trans. Magnetics 35, 1163–1166CrossRefGoogle Scholar
  4. [4]
    Clemens, M., Weiland, T. (2002): Magnetic field simulation using Conformal FIT formulations. IEEE Trans. Magnetics 38, 389–392CrossRefGoogle Scholar
  5. [5]
    Clemens, M., Hilgner, M., Schuhmann, R., Weiland, T. (2000): Transient eddy current simulation using the nonorthogonal FIT. In: Conference Record of the Ninth Biennial IEEE Conference on Electromagnetic Field Computation. IEEE Magnetics Society, IEEE, Piscataway, NJ, p. 389Google Scholar
  6. [6]
    Drobny, S., Weiland, T. (2000): Numerical calculation of nonlinear transient field problems with the Newton-Raphson method. IEEE Trans. Magnetics 36, 809–812CrossRefGoogle Scholar
  7. [7]
    Emson, C.R.I. (1990): Summary of results for hollow conducting sphere in uniform transiently varying magnetic field (problem 11). COMPAL 9, 191–203CrossRefGoogle Scholar
  8. [8]
    Krietenstein, B., Thoma, P., Schuhmann, R., Weiland, T. (1998): The perfect boundary approximation technique facing the big challenge of high precision field computation. In: Eyberger, C.E. et al. (eds.):Proceedings of the XIX International LINAC Conference. Argonne National Laboratory, Argonne, IL, pp. 860–862Google Scholar
  9. [9]
    Monk, P., Süli, E. (1994): A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Müller, W, Krüger, J., Jacobus, A., Winz, R., Weiland, T., Euler, H., Kamm, U., Novender, W.R. (1982): Numerical solution of 2-and 3-dimensional nonlinear field problems by means of the computer program PROFI. Archiv Elektrotechnik 65, 299–307CrossRefGoogle Scholar
  11. [11]
    Munteanu, I., Drobny, S., Weiland, T., Ioan, D. (2001): Triangle search method for nonlinear electromagnetic field computation. COMPAL, 20, 417–430MATHCrossRefGoogle Scholar
  12. [12]
    Niikura, S., Kameari, A. (1992): Analysis of eddy current and force in conductors with motion. IEEE Trans. Magnetics 28, 1450–1453CrossRefGoogle Scholar
  13. [13]
    Ruge, J., Stueben, K. (1986): Algebraic multigrid AMG. Arbeitspapiere no. 210. Gesellschaft für Mathematik und Datenverarbeitung, Sankt AugustinGoogle Scholar
  14. [14]
    Schwab, A.J. (1998): Begriffswelt der Feldtheorie. 5. Aufl. Springer, BerlinMATHCrossRefGoogle Scholar
  15. [15]
    Thoma, P., Weiland, T. (1996): A consistent subgridding scheme for the finite difference time_domain method. Internat. J. Numer. Modelling 9, 359–374CrossRefGoogle Scholar
  16. [16]
    Weiland, T. (1977): A discretization method for the solution of Maxwell’s equations for six-component fields. Arch. Elektronik Übertragungstech. 31, 116–120Google Scholar
  17. [17]
    Weiland, T. (1979): Lossy waveguides with arbitrary boundary contour and distribution of material. Arch. Elektronik Übertragungstcch. 33, 170–174Google Scholar
  18. [18]
    Weiland, T. (1996): Time domain electromagnetic field computation with finite difference methods. Internat. J. Numer. Modelling 9, 295–319CrossRefGoogle Scholar
  19. [19]
    Yu, W., Miura, R. (2001): A conformal finite difference time domain technique for modeling curved dielectric surfaces. IEEE Microwave Wireless Components Lett. 11, 25–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • M. Clemens
    • 1
  • T. Weiland
    • 1
  1. 1.Department of Electrical Engineering and Information Technology, Computational Electromagnetics Laboratory (TEMF)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations