Advertisement

FE solution of a 3D-thermoelectrical model for metallurgical electrodes

  • A. Bermúdez
  • J. Bullón
  • P. Salgado
Conference paper

Summary

The objective of this work is to introduce and numerically solve a 3D-mathematical model for stationary thermoelectrical behavior of electrodes in a metallurgical electric furnace.

Keywords

Calcium Carbide Electromagnetic Problem Straight Wire Current Density Field Furnace Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [I]
    Bermúdez, A., Bullón, J., Pena, F. (1998): A finite element method for the thermoelectrical modelling of electrodes. Comm. Numer. Methods Engrg. 14, 581–593MATHCrossRefGoogle Scholar
  2. [2]
    Bermúdez, A., Bullón, J., Muñiz, M., Pena, F. (1999): Numerical computation of the electromagnetic field in the electrodes of a three-phase arc furnace. Internal. J. Numer. Methods Engrg. 46, 649–658MATHCrossRefGoogle Scholar
  3. [3]
    Bermúdez. A., Muñoz-Sola, R. (1999): Existence of solution of a coupled problem arising in the thermoelectrical simulation of electrodes. Quart. Appl. Math. 57, 621–636MathSciNetMATHGoogle Scholar
  4. [4]
    Bermúdez, A., Bullón, J., Pena, F., Salgado, P. (2001): A numerical method for the evolutionary sate of a Elsa electrode. Finite Elem. Anal. Des., to appearGoogle Scholar
  5. [5]
    Bermúdez, A., Rodríguez, R., Salgado, P. (2001): A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. Pre-publicacion 2001-14. Departamento de Ingeniería Matemática, Universidad de Concepción, Chile, submittedGoogle Scholar
  6. [6]
    Bullón, J., Gallego, V. (1994): The use of a compound electrode for the production of silicon metal. In: Electric Furnace Conference Proceedings, vol. 52. Iron & Steel Society, Warrendale, PA, pp. 371–374Google Scholar
  7. [7]
    Bullón, J., Bermúdez, A. (1996): Development in 1996 of the new electrode for silicon metal. In: Electric Furnace Conference Proceedings, vol. 54. Iron & Steel Society, Warrendale, PA, pp. 139–144Google Scholar
  8. [8]
    D’Ambrosio, P., Letizia, I. (1983): Temperature and stress distribution on carbon electrodes for silicon metal production under transient temperature conditions. 16th Biennial Conference on Carbon. Baden-BadenGoogle Scholar
  9. [9]
    Innvær, R. (1976): Temperatures in Soderberg electrodes in unsteady state conditions. Union Internationale d’Electrothermie. 8th Congress. LiegeGoogle Scholar
  10. [10]
    Innvær, R., Olsen, L. (1980): Practical use of mathematical models for Soderberg electrodes. In: Electric Furnace Conference Proceedings, vol. 38. Iron & Steel Society, Warrendale, PA, pp. 40–47Google Scholar
  11. [11]
    Innvær, R., Fidje, K., Sira, T. (1987): 3-dimensional calculations on smelting electrodes. Reprinted in MIC-Model. Identif. Control 8, 103–115CrossRefGoogle Scholar
  12. [12]
    Popović, B. D. (1971): Introductory engineering electromagnetics. Addison-Wesley, Reading, MAGoogle Scholar
  13. [13]
    Schei, A, Tuset, J. Kr., Tveit, H. (1998): Production of High Silicon Alloys, Tapir, TrondheimGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • A. Bermúdez
    • 1
  • J. Bullón
    • 2
  • P. Salgado
    • 1
  1. 1.Departamento de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.FERROATLÁNTICA I+DA CoruñaSpain

Personalised recommendations