FE solution of a 3D-thermoelectrical model for metallurgical electrodes

  • A. Bermúdez
  • J. Bullón
  • P. Salgado
Conference paper


The objective of this work is to introduce and numerically solve a 3D-mathematical model for stationary thermoelectrical behavior of electrodes in a metallurgical electric furnace.


Calcium Carbide Electromagnetic Problem Straight Wire Current Density Field Furnace Center 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [I]
    Bermúdez, A., Bullón, J., Pena, F. (1998): A finite element method for the thermoelectrical modelling of electrodes. Comm. Numer. Methods Engrg. 14, 581–593MATHCrossRefGoogle Scholar
  2. [2]
    Bermúdez, A., Bullón, J., Muñiz, M., Pena, F. (1999): Numerical computation of the electromagnetic field in the electrodes of a three-phase arc furnace. Internal. J. Numer. Methods Engrg. 46, 649–658MATHCrossRefGoogle Scholar
  3. [3]
    Bermúdez. A., Muñoz-Sola, R. (1999): Existence of solution of a coupled problem arising in the thermoelectrical simulation of electrodes. Quart. Appl. Math. 57, 621–636MathSciNetMATHGoogle Scholar
  4. [4]
    Bermúdez, A., Bullón, J., Pena, F., Salgado, P. (2001): A numerical method for the evolutionary sate of a Elsa electrode. Finite Elem. Anal. Des., to appearGoogle Scholar
  5. [5]
    Bermúdez, A., Rodríguez, R., Salgado, P. (2001): A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. Pre-publicacion 2001-14. Departamento de Ingeniería Matemática, Universidad de Concepción, Chile, submittedGoogle Scholar
  6. [6]
    Bullón, J., Gallego, V. (1994): The use of a compound electrode for the production of silicon metal. In: Electric Furnace Conference Proceedings, vol. 52. Iron & Steel Society, Warrendale, PA, pp. 371–374Google Scholar
  7. [7]
    Bullón, J., Bermúdez, A. (1996): Development in 1996 of the new electrode for silicon metal. In: Electric Furnace Conference Proceedings, vol. 54. Iron & Steel Society, Warrendale, PA, pp. 139–144Google Scholar
  8. [8]
    D’Ambrosio, P., Letizia, I. (1983): Temperature and stress distribution on carbon electrodes for silicon metal production under transient temperature conditions. 16th Biennial Conference on Carbon. Baden-BadenGoogle Scholar
  9. [9]
    Innvær, R. (1976): Temperatures in Soderberg electrodes in unsteady state conditions. Union Internationale d’Electrothermie. 8th Congress. LiegeGoogle Scholar
  10. [10]
    Innvær, R., Olsen, L. (1980): Practical use of mathematical models for Soderberg electrodes. In: Electric Furnace Conference Proceedings, vol. 38. Iron & Steel Society, Warrendale, PA, pp. 40–47Google Scholar
  11. [11]
    Innvær, R., Fidje, K., Sira, T. (1987): 3-dimensional calculations on smelting electrodes. Reprinted in MIC-Model. Identif. Control 8, 103–115CrossRefGoogle Scholar
  12. [12]
    Popović, B. D. (1971): Introductory engineering electromagnetics. Addison-Wesley, Reading, MAGoogle Scholar
  13. [13]
    Schei, A, Tuset, J. Kr., Tveit, H. (1998): Production of High Silicon Alloys, Tapir, TrondheimGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • A. Bermúdez
    • 1
  • J. Bullón
    • 2
  • P. Salgado
    • 1
  1. 1.Departamento de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.FERROATLÁNTICA I+DA CoruñaSpain

Personalised recommendations