Computation of Maxwell eigenvalues on curvilinear domains using hp-version Nédélec elements

  • M. Ainsworth
  • J. Coyle


In this paper we present and numerically verify theoretical bounds on the growth of the conditioning number for an H(curl)-conforming basis suitable for variable order approximation on curvilinear quadrilateral or hexahedral meshes. These bounds are given explicitly in terms of the maximum polynomial degree of approximation employed throughout the mesh. Additionally, numerical examples demonstrating the use of the basis in the context of electromagnetic eigenvalue problems on curved domains with reentrant comers are given. These examples also serve as a preliminary investigation of hp-refinement in computing eigenvalues corresponding to both singular and non-singular eigenfunctions on curvilinear domains.


Loglog Plot Edge Element Hexahedral Mesh Theoretical Bound Reentrant Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ainsworth, M., Coyle, J. (2001): Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra. SIAM J. Numer. Anal., to appearGoogle Scholar
  2. [2]
    Ainsworth, M., Coyle J. (2001): Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190, 6709–6733MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Ainsworth, M., Pinchedez, K. (2001): hp-approximation theory for BDFM/RT elements and applications. SIAM J. Numer. Anal., to appearGoogle Scholar
  4. [4]
    Ainsworth, M., Senior, B. (1998): An adaptive refinement strategy for hp-finite element computations. Appl. Numer. Math. 26, 165–178MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Ainsworth, M., Senior, B. (1999): hp-finite element procedures on non-uniform geometric meshes: adaptivity and constrained approximation. In: Bern, M.W. et al. (eds.): Grid generation and adaptive algorithms. (The IMA Volumes in Mathematics and its Applications, vol. 113). Springer, New York, pp. 1–27CrossRefGoogle Scholar
  6. [6]
    Bajer, A., Gerdes, K., Demkowicz, L., Rachowicz, W. (1999): 3D hp-adaptive finite element package. Fortran 90 Implementation (3Dhp90). TICAM Report 99-29. University of Texas, Austin, TXGoogle Scholar
  7. [7]
    Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I. (1999): Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Bossavit, A., Mayergoyz, I. (1989): Edge elements for scattering problems. IEEE Trans. Magnetics 25, 2816–2821CrossRefGoogle Scholar
  9. [9]
    Bossavit, A., Verite, J.-C. (1982): A mixed FEM-BEM method to solve 3-D eddy-current problems. IEEE Trans. Magnetics MAG-18, 431–435CrossRefGoogle Scholar
  10. [10]
    Ciarlet, P.G. (1978): The finite element method for elliptic problems. North-Holland, AmsterdamMATHGoogle Scholar
  11. [11]
  12. [12]
    Demkowicz, L., Monk, P., Schwab, C., Vardapetyan, L. (2000): Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40, 589–605MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Demkowicz, L., Vardapetyan, L. (1998): Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152, 103–124MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Gradshteyn, I.S., Ryzhik, I.M. (1994): Tables of integrals, series, and products. Fifth edition. Academic Press, Boston, MAGoogle Scholar
  15. [15]
    Hiptmair, R. (2001): Higher order Whitney forms. J. Electromagnetic Waves Appl. 15, 341–342CrossRefGoogle Scholar
  16. [16]
    Hu, N., Guo, X.-Z., Katz, I.N. (1998): Bounds for eigenvalues and condition numbers in the p-version of the finite element method. Math. Comp. 67, 1423–1450MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Jin, J. (1993): The finite element method in electromagnetics. Wiley, New YorkGoogle Scholar
  18. [18]
    Kikuchi, F. (1987): Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Engrg. 64, 509–521MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Monk, P. (1993): An analysis of Nédélec’s method for spatial discretization of Maxwell’s equations. J. Comput. Appl. Math. 47, 101–121MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Mur, G. (1994): Edge elements, their advantages and their disadvantages. IEEE Trans. Magnetics 30, 3552–3557CrossRefGoogle Scholar
  21. [21]
    Nédélec, J.-C. (1980): Mixed finite elements in ℝ3. Numer. Math. 93, 315–341CrossRefGoogle Scholar
  22. [22]
    Rachowicz, W., Demkowicz, L. (1998): A two dimensional hp-adaptive finite element package for clectromagnetics (2Dhp90_EM). TICAM Report 98-16. University of Texas, Austin, TXGoogle Scholar
  23. [23]
    Rachowicz, W., Demkowicz, L. (2002): An hp-adaptive finite element method for electromagnetics. II. A 3D implementation. Internat, J. Numer. Methods Engrg. 53, 147–180MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Sun, D., Manges, J., Yuan, X., Cendes, Z. (1995): Spurious modes in finite-element methods. IEEE Antennas Propagation 37(5), 12–24CrossRefGoogle Scholar
  25. [25]
    Szabó, B., Babuška, I. (1991): Finite element analysis. Wiley, New YorkMATHGoogle Scholar
  26. [26]
    Webb, J. (1999): Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Antennas and Propagation 47, 1244–1253MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • M. Ainsworth
    • 1
  • J. Coyle
    • 1
  1. 1.Department of MathematicsUniversity of StrathclydeGlasgowScotland

Personalised recommendations