Advertisement

Residual-free bubbles for a singular perturbation equation

  • M. I. Asensio
  • L. P. Franca
  • A. Russo
Conference paper

Summary

We introduce a Galerkin formulation for the advective-reactive-diffusive equation. It is based on “residual-free bubble” enrichments for the test and trial spaces. An approximation of the ideal residual-free bubbles is considered and a new stabilized method is derived. The resulting formulation is proven to be stable for a wide range of coefficients and a convergence estimate is established. Numerical experiments attest to the stability and accuracy of the approach introduced.

Keywords

Galerkin Method Homogeneous Dirichlet Boundary Condition Reactive Coefficient Trial Space Galerkin Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brezzi, F., Franca, L.P., Hughes, T.J.R., Russo, A. (1997): b = ∫ g. Comput. Methods Appl. Mech. Engrg. 145, 329–339MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Brezzi, F., Franca, L.P., Russo, A. (1998): Further considerations on residual-free bubbles for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 166, 25–33MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Brezzi, F., Russo, A. (1994): Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4, 571–587MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Brooks, A.N., Hughes, T.J.R. (1982): Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Franca, L.P., Frey, S.L., Hughes, T.J.R. (1992): Stabilized finite element methods. I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95, 253–276MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Franca, L.P., Russo A. (1996): Approximation of the Stokes problem by residual-free macro bubbles. East-West J. Numer. Math. 4, 265–278MathSciNetMATHGoogle Scholar
  7. [7]
    Franca, L.P., Valentin, F. (2000): On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Engrg. 190, 1785–1800MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • M. I. Asensio
    • 1
  • L. P. Franca
    • 2
  • A. Russo
    • 3
    • 4
  1. 1.Departamento de Matematica AplicadaUniversidade de SalamancaSalamancaSpain
  2. 2.Department of MathematicsUniversity of ColoradoDenverUSA
  3. 3.Dipartimento di Matematica e ApplicazioniUniversità di Milano BicoccaMilanoItaly
  4. 4.IMATI-CNRPaviaItaly

Personalised recommendations