Skip to main content

Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems

  • Conference paper
Numerical Mathematics and Advanced Applications

Summary

We consider efficient iterative solvers for the numerical solution of systems of PDEs arising in the computation of electromagnetic fields and in electrothermomechanical coupling problems. We focus on domain decomposition methods on nonmatching grids, also known as mortar element methods, and the solution of the resulting saddle point problems by multilevel preconditioned iterative schemes. The underlying hierarchy of triangulations is generated by adaptive grid refinement/coarsening on the basis of efficient and reliable residual type a posteriori error estimators. In particular, with regard to the electromagnetic field computations we rely on the use of edge element discretizations which require an appropriate treatment of the nontrivial kernel of the discrete curl operator by means of a distributed smoothing process. As applications, we address the numerical simulation of the operational behavior of integrated high voltage modules which is strongly determined by the coupling of electrical, thermal, and mechanical phenomena, and the structural optimization of high power electronic devices and systems featuring an all-in-one approach by primal-dual Newton interior-point methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achdou, Y., Kuznetsov, Yu.A. (1995): Substructuring preconditioners for finite element methods on nonmatching grids. East-West J. Numer. Math. 3, 1–28

    MathSciNet  MATH  Google Scholar 

  2. Achdou, Y, Maday, Y, Widlund, O.B. (1996): Méthode iterative de sous-structuration pour les éléments avec joints. C.R. Acad. Sci. Paris Sér. I Math. 322, 185–190

    MathSciNet  MATH  Google Scholar 

  3. Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (1999): Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surveys Math. Indust. 8, 271–312

    MathSciNet  MATH  Google Scholar 

  4. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (2000): Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Belgacem, F, Maday, Y (1997): The mortar element method for three-dimensional finite elements. RAIRO Math. Modél. Anal. Numer. 31, 289–302

    MathSciNet  MATH  Google Scholar 

  6. Ben Belgacem, F., Buffa, A., Maday, Y (2001): The mortar finite element method for 3D Maxwell equations: first results. SIAM J. Numer. Anal. 39, 880–901

    Article  MathSciNet  MATH  Google Scholar 

  7. Bemardi, Chr., Maday, Y., Patera, A. (1993): Domain decomposition by the mortar element method. In: Kaper, H.G. et al. (eds.): Asymptotic and numerical methods for partial differential equations with critical parameters. Kluwer, Dordrecht, pp. 269–286

    Google Scholar 

  8. Bernardi, Chr., Maday, Y., Patera, A. (1994): A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis, H., Lions, J.-L. (eds.): Nonlinear partial differential equations and their applications. Collège de France Seminar. Vol. XI. Longman, Harlow, pp. 13–51

    Google Scholar 

  9. Böhm, R, Gerstenmaier, Y.C., Hoppe, R.H.W, Iliash, Y., Mazurkevitch, G., Wachutka, G. (2002): Modeling and simulation of electrothermomechanical coupling phenomena in high power electronics. In: Breuer, M. et al. (eds.): High performance scientific and engineering computing. (Lecture Notes in Computational Science and Engineering, vol. 21). Springer, Berlin, pp. 393–400

    Chapter  Google Scholar 

  10. Braess, D., Dahmen, W. (1998): Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6, 249–263

    MathSciNet  MATH  Google Scholar 

  11. Brezzi, F, Marini, D. (2001): Error estimates for the three-field formulation with bubble stabilization. Math. Comp. 70, 911–934

    Article  MathSciNet  MATH  Google Scholar 

  12. Engelmann, B., Hoppe, R.H.W, Iliash, Y., Kuznetsov, Y., Vassilevski, Y., Wohlmuth, B. (2000): Adaptive finite element methods for domain decomposition on nonmatching grids. In: Bjørstad, P., Luskin, M. (eds.): Parallel solution of partial differential equations. (The IMA Volumes in Mathematics and its Applications, vol. 120). Springer, Berlin, pp. 57–83

    Chapter  Google Scholar 

  13. Hiptmair, R. (1999): Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225

    Article  MathSciNet  Google Scholar 

  14. Hiptmair, R., Hoppe, R.H.W. (1994): Mixed finite element discretization of continuity equations arising in semiconductor simulation. In: Bank, R.E. et al. (eds.): Mathematical modeling and simulation of electrical circuits and semiconductor devices. Birkhäuser, Basel, pp. 197–217

    Chapter  Google Scholar 

  15. Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (1995): Coupling problems in microelectronic device simulation. In: Hackbusch, W., Wittum, G. (eds.): Numerical treatment of coupled systems. (Notes on Numerical Fluid Mechanics, vol. 51) Vieweg, Wiesbaden, pp. 86–95

    Chapter  Google Scholar 

  16. Hoppe, R. H.W (1999): Mortar edge elements in R 3. East-West J. Numer. Anal. 7, 159–173

    MathSciNet  MATH  Google Scholar 

  17. Hoppe, R.H.W. (2001): Efficient numerical solution techniques in electromagnetic field computation. In: 2nd European conference on computational mechanics. Institute of Computer Methods in Civil Engineering, Cracow University of Technology, Cracow. CD-Rom

    Google Scholar 

  18. Hoppe, R.H.W., Iliash, Y., Kuznetsov, Y., Vassilevski, Y., Wohlmuth, B. (1998): Analysis and parallel implementation of adaptive mortar element methods. East-West J. Numer. Math. 6, 223–248

    MathSciNet  MATH  Google Scholar 

  19. Hoppe, R.H.W, Iliash, Y., Mazurkevitch, G. (2000): Domain decomposition methods in the design of high power electronic devices. In: Sändig, A.-M. et al. (eds.): Multifield problems. Springer, Berlin, pp. 169–182

    Google Scholar 

  20. Hoppe, R.H.W, Petrova, S., Schulz, V. (2002): 3D structural optinuzation in electromagnetics. In: Debit, N. et al. (eds.): Proceedings of the 13th international conference on domain decomposition methods in Lyon, France. CIMNE, Barcelona, pp. 469-476

    Google Scholar 

  21. Hoppe, R.H.W, Petrova, S., Schulz, V. (2002): Primal-dual Newton-type interior-point method for topology optimization. J. Optim. Theory Appl. 114, 545–571

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuznetsov, Yu.A., Wheeler, M.F. (1995): Optimal order substructuring preconditioners for mixed finite element methods on nonmatching grids. East-West J. Numer. Math. 3, 127–143

    MathSciNet  MATH  Google Scholar 

  23. Markovich, P., Ringhofer, Chr., Schmeiser, Chr. (1990): Semiconductor equations. Springer, Vienna

    Book  Google Scholar 

  24. Nédélec, J. (1980): Mixed finite elements in R 3. Numer. Math. 35, 315–341

    Article  MathSciNet  MATH  Google Scholar 

  25. Rapetti, F. (2000): Approximation des equations de la magnetodynamique en domaine tournant par la méthode des elements avec joints. Ph.D. thesis. Université Pierre et Marie Curie — Paris 6, Paris

    Google Scholar 

  26. Selberherr, S. (1984): Analysis and simulation of semiconductor devices. Springer, Berlin

    Book  Google Scholar 

  27. Wachutka, G. (1999): The art of modeling coupled-field effects in microdevices and microsystems. In: Technical proceedings 1999 international conference on modeling and simulation of microsystems. Applied Computational Research Society, Cambridge, MA, pp. 14–19

    Google Scholar 

  28. Wohlmuth, B. (2001): Discretization methods and iterative solvers based on domain decomposition. (Lecture Notes in Computational Science and Engineering, vol. 17). Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Hoppe, R.H.W. (2003). Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds) Numerical Mathematics and Advanced Applications. Springer, Milano. https://doi.org/10.1007/978-88-470-2089-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2089-4_19

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2167-9

  • Online ISBN: 978-88-470-2089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics