Advertisement

Adaptive domain decomposition techniques in electromagnetic field computation and electrothermomechanical coupling problems

  • R. H. W. Hoppe

Summary

We consider efficient iterative solvers for the numerical solution of systems of PDEs arising in the computation of electromagnetic fields and in electrothermomechanical coupling problems. We focus on domain decomposition methods on nonmatching grids, also known as mortar element methods, and the solution of the resulting saddle point problems by multilevel preconditioned iterative schemes. The underlying hierarchy of triangulations is generated by adaptive grid refinement/coarsening on the basis of efficient and reliable residual type a posteriori error estimators. In particular, with regard to the electromagnetic field computations we rely on the use of edge element discretizations which require an appropriate treatment of the nontrivial kernel of the discrete curl operator by means of a distributed smoothing process. As applications, we address the numerical simulation of the operational behavior of integrated high voltage modules which is strongly determined by the coupling of electrical, thermal, and mechanical phenomena, and the structural optimization of high power electronic devices and systems featuring an all-in-one approach by primal-dual Newton interior-point methods.

Keywords

Solder Joint Domain Decomposition Domain Decomposition Method Edge Element Saddle Point Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Achdou, Y., Kuznetsov, Yu.A. (1995): Substructuring preconditioners for finite element methods on nonmatching grids. East-West J. Numer. Math. 3, 1–28MathSciNetMATHGoogle Scholar
  2. [2]
    Achdou, Y, Maday, Y, Widlund, O.B. (1996): Méthode iterative de sous-structuration pour les éléments avec joints. C.R. Acad. Sci. Paris Sér. I Math. 322, 185–190MathSciNetMATHGoogle Scholar
  3. [3]
    Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (1999): Adaptive multilevel methods for edge element discretizations of Maxwell’s equations. Surveys Math. Indust. 8, 271–312MathSciNetMATHGoogle Scholar
  4. [4]
    Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (2000): Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34, 159–182MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Ben Belgacem, F, Maday, Y (1997): The mortar element method for three-dimensional finite elements. RAIRO Math. Modél. Anal. Numer. 31, 289–302MathSciNetMATHGoogle Scholar
  6. [6]
    Ben Belgacem, F., Buffa, A., Maday, Y (2001): The mortar finite element method for 3D Maxwell equations: first results. SIAM J. Numer. Anal. 39, 880–901MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Bemardi, Chr., Maday, Y., Patera, A. (1993): Domain decomposition by the mortar element method. In: Kaper, H.G. et al. (eds.): Asymptotic and numerical methods for partial differential equations with critical parameters. Kluwer, Dordrecht, pp. 269–286Google Scholar
  8. [8]
    Bernardi, Chr., Maday, Y., Patera, A. (1994): A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis, H., Lions, J.-L. (eds.): Nonlinear partial differential equations and their applications. Collège de France Seminar. Vol. XI. Longman, Harlow, pp. 13–51Google Scholar
  9. [9]
    Böhm, R, Gerstenmaier, Y.C., Hoppe, R.H.W, Iliash, Y., Mazurkevitch, G., Wachutka, G. (2002): Modeling and simulation of electrothermomechanical coupling phenomena in high power electronics. In: Breuer, M. et al. (eds.): High performance scientific and engineering computing. (Lecture Notes in Computational Science and Engineering, vol. 21). Springer, Berlin, pp. 393–400CrossRefGoogle Scholar
  10. [10]
    Braess, D., Dahmen, W. (1998): Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6, 249–263MathSciNetMATHGoogle Scholar
  11. [11]
    Brezzi, F, Marini, D. (2001): Error estimates for the three-field formulation with bubble stabilization. Math. Comp. 70, 911–934MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Engelmann, B., Hoppe, R.H.W, Iliash, Y., Kuznetsov, Y., Vassilevski, Y., Wohlmuth, B. (2000): Adaptive finite element methods for domain decomposition on nonmatching grids. In: Bjørstad, P., Luskin, M. (eds.): Parallel solution of partial differential equations. (The IMA Volumes in Mathematics and its Applications, vol. 120). Springer, Berlin, pp. 57–83CrossRefGoogle Scholar
  13. [13]
    Hiptmair, R. (1999): Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225MathSciNetCrossRefGoogle Scholar
  14. [14]
    Hiptmair, R., Hoppe, R.H.W. (1994): Mixed finite element discretization of continuity equations arising in semiconductor simulation. In: Bank, R.E. et al. (eds.): Mathematical modeling and simulation of electrical circuits and semiconductor devices. Birkhäuser, Basel, pp. 197–217CrossRefGoogle Scholar
  15. [15]
    Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B. (1995): Coupling problems in microelectronic device simulation. In: Hackbusch, W., Wittum, G. (eds.): Numerical treatment of coupled systems. (Notes on Numerical Fluid Mechanics, vol. 51) Vieweg, Wiesbaden, pp. 86–95CrossRefGoogle Scholar
  16. [16]
    Hoppe, R. H.W (1999): Mortar edge elements in R 3. East-West J. Numer. Anal. 7, 159–173MathSciNetMATHGoogle Scholar
  17. [17]
    Hoppe, R.H.W. (2001): Efficient numerical solution techniques in electromagnetic field computation. In: 2nd European conference on computational mechanics. Institute of Computer Methods in Civil Engineering, Cracow University of Technology, Cracow. CD-RomGoogle Scholar
  18. [18]
    Hoppe, R.H.W., Iliash, Y., Kuznetsov, Y., Vassilevski, Y., Wohlmuth, B. (1998): Analysis and parallel implementation of adaptive mortar element methods. East-West J. Numer. Math. 6, 223–248MathSciNetMATHGoogle Scholar
  19. [19]
    Hoppe, R.H.W, Iliash, Y., Mazurkevitch, G. (2000): Domain decomposition methods in the design of high power electronic devices. In: Sändig, A.-M. et al. (eds.): Multifield problems. Springer, Berlin, pp. 169–182Google Scholar
  20. [20]
    Hoppe, R.H.W, Petrova, S., Schulz, V. (2002): 3D structural optinuzation in electromagnetics. In: Debit, N. et al. (eds.): Proceedings of the 13th international conference on domain decomposition methods in Lyon, France. CIMNE, Barcelona, pp. 469-476Google Scholar
  21. [21]
    Hoppe, R.H.W, Petrova, S., Schulz, V. (2002): Primal-dual Newton-type interior-point method for topology optimization. J. Optim. Theory Appl. 114, 545–571MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Kuznetsov, Yu.A., Wheeler, M.F. (1995): Optimal order substructuring preconditioners for mixed finite element methods on nonmatching grids. East-West J. Numer. Math. 3, 127–143MathSciNetMATHGoogle Scholar
  23. [23]
    Markovich, P., Ringhofer, Chr., Schmeiser, Chr. (1990): Semiconductor equations. Springer, ViennaCrossRefGoogle Scholar
  24. [24]
    Nédélec, J. (1980): Mixed finite elements in R 3. Numer. Math. 35, 315–341MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Rapetti, F. (2000): Approximation des equations de la magnetodynamique en domaine tournant par la méthode des elements avec joints. Ph.D. thesis. Université Pierre et Marie Curie — Paris 6, ParisGoogle Scholar
  26. [26]
    Selberherr, S. (1984): Analysis and simulation of semiconductor devices. Springer, BerlinCrossRefGoogle Scholar
  27. [27]
    Wachutka, G. (1999): The art of modeling coupled-field effects in microdevices and microsystems. In: Technical proceedings 1999 international conference on modeling and simulation of microsystems. Applied Computational Research Society, Cambridge, MA, pp. 14–19Google Scholar
  28. [28]
    Wohlmuth, B. (2001): Discretization methods and iterative solvers based on domain decomposition. (Lecture Notes in Computational Science and Engineering, vol. 17). Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • R. H. W. Hoppe
    • 1
  1. 1.Institute of MathematicsUniversity of AugsburgAugsburgGermany

Personalised recommendations