Mixed-hybrid FEM discrete fracture network model of the fracture flow

  • J. Maryška
  • O. Severýn
  • M. Vohralík
Conference paper


A stochastic discrete fracture network model of Darcy’s underground water flow in disrupted rock massifs is introduced. The mixed finite element method and hybridization of the appropriate lowest order Raviart-Thomas approximation are used for the special conditions of a flow through a connected system of 2D polygons embedded in 3D. A model problem is tested.


Model Problem Fracture Flow Pressure Trace Mixed Finite Element Method Type Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Maryška, J., Rozložník, M., Tůma, M. (2000): Schur complement reduction in the mixed-hybrid finite element approximation of Darcy’s law: rounding error analysis. J. Comput. Appl. Math. 117, 159–173MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Quarteroni, A., Valli, A. (1994): Numerical approximation of partial differential equations. Springer, BerlinMATHGoogle Scholar
  3. [3]
    Raviart, P.A., Thomas, J.M. (1977): A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical aspects of finite element methods. (Lecture Notes in Mathematics, vol. 606) Springer, Berlin, pp. 292–315CrossRefGoogle Scholar
  4. [4]
    Roberts, J.E., Thomas, J.-M. (1991): Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of numerical analysis, Vol. II. Finite element methods. Part 1. North-Holland, Amsterdam, pp. 523–639Google Scholar
  5. [5]
    Vohralík, M. (2001): Existence-and error-analysis of the mixed-hybrid model of the fracture flow. Preprint MATH-NM-06-2001. Technische Universität Dresden, DresdenGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • J. Maryška
    • 1
  • O. Severýn
    • 2
  • M. Vohralík
    • 3
  1. 1.Department of Modeling of Processes, Faculty of MechatronicsTechnical University of LiberecLiberecCzech Republic
  2. 2.Faculty of MechatronicsTechnical University of LiberecLiberecCzech Republic
  3. 3.Czech Technical UniversityFNPEPrahaCzech Republic

Personalised recommendations