High-order relaxation methods for incompressible Navier-Stokes equations

  • A. Klar
  • M. Seaïd
Conference paper


The present paper is concerned with the reconstruction of high-order relaxation methods and their application to approximate solutions of incompressible Navier-Stokes equations. Particular attention is given to a class of third-order relaxation schemes. Numerical examples carried out on laminar flow problems illustrate the higher resolution and better accuracy of the schemes.


Strouhal Number Lift Coefficient Relaxation Method Primary Vortex Relaxation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ascher, U., Ruuth, S., Spiteri, R. (1997): Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Banda, M.K., Klar, A., Pareschi, L., Seaïd, M. (2001): Lattice-Boltzmann type relaxation systems and higher order relaxation schemes for the incompressible Navier-Stokes equation. Preprint 343. TMR-project: Asymptotic methods in kenetic theory. www.math.tuberlin/~tmrGoogle Scholar
  3. [3]
    Chorin, A. (1968): Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    E, W., Liu, G.-J. (1996): Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Ghia, U., Ghia, K.N., Shin, C.T. (1982): High-Re solutions for incompressible flow using the Navier-Stokes equation s and a multigrid method. J. Comput. Phys. 48, 387–411MATHCrossRefGoogle Scholar
  6. [6]
    Jin, S., Xin, Z.P. (1995): The relaxation scheme s for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–276MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Klar, A. (1999): Relaxation scheme for a lattice-Boltzmann-type discrete velocity model and numerical Navier-Stokes limit. J. Comput. Phys. 148, 416–432MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Kurganov, A., Levy, D. (2000): A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22, 1461–1488MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Lattanzio, C., Serre, D. (2001): Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88, 121–134MathSciNetCrossRefGoogle Scholar
  10. [10]
    Morgan K., Periaux, J., Thomasset, F. (eds.) (1984): Analysis of laminar flow over a backward facing step. (Notes on Numerical Fluid Mechanics, vol. 9). Vieweg, BraunschweigMATHGoogle Scholar
  11. [11]
    Natalini, R. (1996): Convergence to equilibrium for relaxation approximations of conservation laws. Comm. Pure Appl. Math. 49, 795–823MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Schäfer, M., Turek, S. (1996): Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.): Flow simulation with high-performance computers. II. (Notes on Numerical Fluid Mechanics, vol. 52). Vieweg, Wiesbaden, pp. 547–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • A. Klar
    • 1
  • M. Seaïd
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations