Advertisement

Risk-Stratification in Heart Failure Patients with Varying Disease Severity

  • I. Can
  • K. Aytemir
  • A. Oto
Conference paper

Abstract

Heart failure (HF) is one of the major cardiovascular problems, affecting 15 million people worldwide [1,2]. Despite declining mortality from heart disease, the number of patients affected by HF is still increasing [3]. There is an overall 5-year mortality of 50%, and in severe cases this percentage reaches 35%-40% in 1 year [4]. The rates for total mortality and sudden death vary by functional class. In mild HF [New York Heart Association (NYHA) functional class II], the overall annual mortality is 5%-15%, with approximately one-half to two-thirds being classified as sudden. In NYHA class III, the annual mortality increases to 20%-50% and in class IV it often exceeds 50% [5]. Considering the wide spectrum of disease severity in patients with HF, a risk stratification strategy is reasonable to identify those at high risk of cardiac events, in whom more aggressive management may be beneficial. This is especially important for ambulatory patients with moderate-to-severe congestive heart failure (CHF). In this respect, a number of variables have been thorougly investigated. A review of the most commonly used ones will be discussed in this chapter.

Keywords

Heart Rate Variability Chronic Heart Failure Heart Failure Patient Brain Natriuretic Peptide Right Ventricular Ejection Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erikson H (1995) Heart Failure: growing public health problem. J Intern Med 237:135–141CrossRefGoogle Scholar
  2. 2.
    Ho KKL, Pinsky JL, Kannel WB et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22[Suppl]:6A–13APubMedCrossRefGoogle Scholar
  3. 3.
    Kelly DT (1997) Paul Dudley White International Lecture. Our future society: a global challenge. Circulation 95:2459–2464PubMedCrossRefGoogle Scholar
  4. 4.
    Braunwald E, Zipes DP, Libby P (2001) Heart disease: a textbook of cardiovascular medicine, 6th ed. W.B. Saunders Company, Pennsylvania, pp 534–561Google Scholar
  5. 5.
    Uretsky BF, Sheahan RG (1997) Primary prevention of sudden cardiac death in heart failure: will the solution be shocking? J Am Coll Cardiol 30:1589–1597PubMedCrossRefGoogle Scholar
  6. 6.
    Adams KF, Dunlap SH, Suteta CA et al (1996) Relation between gender, etiology and survival in patients with symptomatic heart failure. J Am Coll Cardiol 28:1781–1788PubMedCrossRefGoogle Scholar
  7. 7.
    Bart BA, Shaw LK, McCants CB et al (1997) Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy. J Am Coll Cardiol 30:1002–1008PubMedCrossRefGoogle Scholar
  8. 8.
    Young JB (1999) Assessment of heart failure. In: Colucci WS (ed) Cardiac function and dysfunction, 2nd ed. In: Braunwald E (series ed) Atlas of heart diseases. vol 4. Philadelphia, Current Medicine, pp 7.1–7.9Google Scholar
  9. 9.
    Chomsky DB, Lang CC, Rayos GH et al (1996) Hemodynamic exercise testing: a valuable tool in the selection of cardiac transplantation candidates. Circulation 94:3176–3183PubMedCrossRefGoogle Scholar
  10. 10.
    Myers J, Gullestad L (1998) The role of exercise testing and gas-exchange measurement in the prognostic assessment of patients with heart failure. Curr Opin Cardiol 13:145–155PubMedGoogle Scholar
  11. 11.
    Myers J, Gullestad L, Vagelos R et al (1998) Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann Intern Med 129:286–293PubMedCrossRefGoogle Scholar
  12. 12.
    Mancini DM, Eisen H, Kussmaul W et al (1991) Value of peak oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786PubMedCrossRefGoogle Scholar
  13. 13.
    Kao W, Winkle EM, Johnson MR et al (1997) Role of maximal oxygen consumption in establishment of heart transplantation candidacy for heart failure patients with intermediate exercise tolerance. Am J Cardiol 79:1124–1127PubMedCrossRefGoogle Scholar
  14. 14.
    Corra U, Mezzani A, Bosimini E et al (2002) Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. Am Heart J 143:418–426PubMedCrossRefGoogle Scholar
  15. 15.
    Robbins M, Francis G, Pashkow FJ et al (1999) Ventilatory and heart rate responses and exercise: better predictors of heart failure mortality than peak oxygen consumption. Circulation 100:2411–2417PubMedCrossRefGoogle Scholar
  16. 16.
    Priori SG, Aliot E, Blomstrom-Lundqvist C et al (2001) Task Force on Sudden Cardiac Death of the European Society of Cardiology. Eur Heart J 22:1374–1450PubMedCrossRefGoogle Scholar
  17. 17.
    Yap Y, Duong T, Bland M et al (2000) Left ventricular ejection fraction in the thrombolytic era remains a powerful predictor of long-term but not short-term all-cause, cardiac and arrhythmic mortality after myocardial infarction - a secondary meta-analysis of 2828 patients. Heart 83:55Google Scholar
  18. 18.
    Copie X, Hnatkova K, Staunton A et al (1996) Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol 27:270–276PubMedCrossRefGoogle Scholar
  19. 19.
    The Multicenter Postinfarction Research Group (1983) Risk stratification and survival after myocardial infarction. N Engl J Med 309–331–336Google Scholar
  20. 20.
    Stevenson WG, Ridker PM (1996) Should survivors of myocardial infarction with low ejection fraction be routinely referred to arrhythmia specialists ? JAMA 14:481–485CrossRefGoogle Scholar
  21. 21.
    Zaret BL, Wackers FJ, Terrin ML et al (1995) Value of radionuclide rest and exercise left ventricular ejection fraction in assessing survival of patients after thrombolytic therapy for acute myocardial infarction: results of Thrombolysis in Myocardial Infarction (TIMI) phase II study. The TIMI Study Group. J Am Coll Cardiol 26:73–79PubMedCrossRefGoogle Scholar
  22. 22.
    Copie X, Hnatkova K, Staunton A et al (1996) Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two year follow-up study. J Am Coll Cardiol 27:270–276PubMedCrossRefGoogle Scholar
  23. 23.
    Mukharji J, Rude RE, Poole WK et al (1984) Risk factors for sudden death after acute myocardial infarction: Two year follow-up. Am J Cardiol 54:31–36PubMedCrossRefGoogle Scholar
  24. 24.
    Bigger JT (1986) Prevalence, characteristics and significance of ventricular tachycardia detected by 24 hour continuous electrocardiographic recordings in the late post hospital phase of acute myocardial infarction. Am J Cardiol 58:1151–1160PubMedCrossRefGoogle Scholar
  25. 25.
    La Royere MT, Mortara A, Bigger JT Jr et al (1998) The prognostic value of baroreflex sensitvity and heart rate variability after myocardial infarction: ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351:478–484CrossRefGoogle Scholar
  26. 26.
    Polak JF, Holman L, Wynne J, Colucci WS (1983) Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol 2:217–224PubMedCrossRefGoogle Scholar
  27. 27.
    De Groote P, Millaire A, Foucer-Hossein C et al (1998) Right ventricular ejection farction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 32:948–954PubMedCrossRefGoogle Scholar
  28. 28.
    Gavazzi A, Berzuini C, Campana C et al (1997) Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant 16:774–785PubMedGoogle Scholar
  29. 29.
    Ghio S, Gavazzi A, Campana C et al (2001) Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 37:183–188PubMedCrossRefGoogle Scholar
  30. 30.
    Lavine SJ, Arends D (1989) Importance of left ventricular filling pressure on diastolic filling in idiopathic dilated cardiomyopathy. Am J Cardiol 64:61–65PubMedCrossRefGoogle Scholar
  31. 31.
    Channer KS, Wilde P, Culling W et al (1986) Estimation of left ventricular end-diastolic pressure by pulsed Doppler ultrasound. Lancet 3:1005–1007CrossRefGoogle Scholar
  32. 32.
    Shen WF, Tribouilloy C, Rey JL et al (1992) Prognostic significance of Doppler-derived left ventricular filling variables in dilated cardiomyopathy. Am Heart J 124:1524–1533PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen A, Haass M, Zugck C et al (2001) Prognostic value of Doppler echocardiographic mitral inflow patterns: implications for risk stratification in patients with chronic congestive heart failure. J Am Coll Cardiol 37:1049–1055PubMedCrossRefGoogle Scholar
  34. 34.
    Takenada K, Dabestani A, Gardin JM et al (1986) Pulsed Doppler echocardiographic study of left ventricular filling in dilated cardiomyopathy. Am J Cardiol 58:143–147CrossRefGoogle Scholar
  35. 35.
    Masuyama T, Popp RL (1997) Doppler evaluation of left ventricular filling in congestive heart failure. Eur Heart J 18:1548–1556PubMedCrossRefGoogle Scholar
  36. 36.
    Dini FK, Michelassi C, Micheli G. et al (2000) Prognostic value of pulmonary venous flow doppler signal in left ventricular dysfunction. J Am Coll Cardiol 36:1295–1302PubMedCrossRefGoogle Scholar
  37. 37.
    Rossvol O, Hatle LK (1993) Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. J Am Coll Cardiol 21:1679–1700CrossRefGoogle Scholar
  38. 38.
    Cecconi M, Manfrin M, Zanoli R et al (1996) Doppler echocardiographic evaluation of left-ventricular end-diastolic pressure in patients with coronary artery disease. J Am Soc Echocardiogr 9:241–250PubMedCrossRefGoogle Scholar
  39. 39.
    Cohn JN, Levine TB, Olivari MT et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823PubMedCrossRefGoogle Scholar
  40. 40.
    Cohn IN, Johnson GR, Shabetai R et al (1993) Ejection fraction, peak exercise oxygen consumption, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as determinants of prognosis in heart failure. The V-HeFT VA Cooperative Studies Group. Circulation 87:V15–V16Google Scholar
  41. 41.
    Packer M, Lee WH, Kessler PD et al (1987) Role of neurohumoral mechanisms in determining survival in patients with severe chronic heart failure. Circulation 75: IV80–IV92PubMedGoogle Scholar
  42. 42.
    Gottlieb SS, Kukin ML, Ahern D et al (1989) Prognostic importance of atrial natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol 13:1534–1539PubMedCrossRefGoogle Scholar
  43. 43.
    Tsutamoto T, Wada A, Maeda L et al (1997) Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 96:509–516PubMedCrossRefGoogle Scholar
  44. 44.
    Hulsmann M, Stanek B, Frey B et al (1998) Value of cardiopulmonary exercise testing and big endothelin plasma levels to predict short-term prognosis in patients with chronic heart failure. J Am Coll Cardiol 32:1695–1700PubMedCrossRefGoogle Scholar
  45. 45.
    Tsutamoto T, Hisanaga T, Wada A et al (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398PubMedCrossRefGoogle Scholar
  46. 46.
    Globits S, Frank H, Pacher B et al (1998) Atrial natriuretic peptide release is more dependent on atrial filling volume than on filling pressure in chronic congestive heart failure. Am Heart J 135:592–597PubMedCrossRefGoogle Scholar
  47. 47.
    Lerman A, Gibbons RJ, Rodeheffer RJ et al (1993) Circulating N terminal atrial natriuretic peptide as a marker for symptomless left ventricular dysfunction. Lancet 341:1105–1109PubMedCrossRefGoogle Scholar
  48. 48.
    Yu CM, Sanderson JE (1999) Plasma brain natriuretic peptide-independent predictor of cardiovascular mortality in acute heart failure. Eur J Heart Failure 1:59–65CrossRefGoogle Scholar
  49. 49.
    Hülsmann M, Berger R, Sturm B et al (2002) Prediction of outcome by neurohormonal activation, the six-minute walk and the Minnesota Living with Heart Failure Questionairre in an outpatient cohort with congestive heart failure. Eur Heart J 23:886–891PubMedCrossRefGoogle Scholar
  50. 50.
    Dao Q, Krishnaswamy P, Kazanegra R et al (2001) Utility of B-natriuretic peptide in the diagnosis of congestive heart failure in an urgent care setting. J Am Coll Cardiol 37:379–385PubMedCrossRefGoogle Scholar
  51. 51.
    Stanek B, Frey B, Hulssman M et al (2001) Prognostic evaluation of of neurohormonal plasma levels before beta-blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol 38:436–442PubMedCrossRefGoogle Scholar
  52. 52.
    Koglin J, Pehlivanli S, Schwaiblmair M et al (2001) Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J Am Coll Cardiol 38:1934–1941PubMedCrossRefGoogle Scholar
  53. 53.
    Aaronson KD, Schwartz IS, Chen TM et al (1997) Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95:2660–2667PubMedCrossRefGoogle Scholar
  54. 54.
    Ishii J, Nomura M, Nakmura Y et al (2002) Risk stratification using a combination of cardiac troponin T and brain natriuretic peptide in patients hospitalized for worsening chronic heart failure. Am J Cardiol 89:691–695PubMedCrossRefGoogle Scholar
  55. 55.
    Likoff MJ, Chandler SL, Kay MR (1987) Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy. Am J Cardiol 59:634–638PubMedCrossRefGoogle Scholar
  56. 56.
    Campana C, Gavazzi A, Berzuini C et al (1993) XXXPredictors of prognosis in patients awaiting heart transplantation J Heart Lung Transplant 12:756–765Google Scholar
  57. 57.
    Setsuta K, Seino Y, Takahashi N et al (1999) Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol 84:608–611PubMedCrossRefGoogle Scholar
  58. 58.
    Vecchia LL, Mezzena G, Zonalla L et al (2000) Cardiac troponin I as diagnostic and prognostic marker in severe heart failure. J Heart Lung Transplant 19:644–652PubMedCrossRefGoogle Scholar
  59. 59.
    Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMedCrossRefGoogle Scholar
  60. 60.
    Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336:1131–1141PubMedCrossRefGoogle Scholar
  61. 61.
    Floras JS (1993) Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 87[Suppl VI]:VI40–VI48Google Scholar
  62. 62.
    Task Force of The European Society of Cardiology and the The North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Eur Heart J 17:354–381CrossRefGoogle Scholar
  63. 63.
    Casolo G, Balli E, Taddei T et al (1989) Decreased spontaneous heart rate variability in congestive heart failure. Am J Cardiol 64:1162–1167PubMedCrossRefGoogle Scholar
  64. 64.
    Kienzle MG, Ferguson DW, Birkett CL et al (1992) Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure. Am J Cardiol 69:761–767PubMedCrossRefGoogle Scholar
  65. 65.
    Nolan J, Batin PD, Andrews R et al (1998) Prospective study of heart rate variability and mortality in chronic heart failure. Circulation 98:1510–1516PubMedCrossRefGoogle Scholar
  66. 66.
    Brouwer J, van Veldhuisen DJ, Man in`t Veld AJ et al (1996) Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicenter Trial Study Group. J Am Coll Cardiol 28:1183–1189CrossRefGoogle Scholar
  67. 67.
    Szabo BM, van Veldhuisen DJ, van der Veer N et al (1997) Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 79:978–980PubMedCrossRefGoogle Scholar
  68. 68.
    Ponikowski P, Aker DS, Chua TP et al (1997) Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dialted cardiomyopathy. Am J Cardiol 79:1645–1650PubMedCrossRefGoogle Scholar
  69. 69.
    Fauchier L, Babuty D, Cosnay P et al (1999) Prognostic value of heart rate variability and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 33:1203–1207PubMedCrossRefGoogle Scholar
  70. 70.
    Bilchick KC, Fetics B, Djoukeng R et al (2002) Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ survival trial of of antiarrhythmic therapy in congestive heart failure). Am J Cardiol 90:24–28PubMedCrossRefGoogle Scholar
  71. 71.
    Shepherd JT (1990) Heart failure: role of cardiovascular reflexes. Cardioscience 1:7–12PubMedGoogle Scholar
  72. 72.
    Thames MD, Kinugawa T, Smith ML et al (1993) Abnormalities of baroreflex control in heart failure. J Am Coll Cardiol 22A:56A–60ACrossRefGoogle Scholar
  73. 73.
    Marin-Neto JA, Pintya AO, Gallo L Jr et al (1991) Abnormal baroreflex control of heart rate in decompensated congestive heart failure and reversal after compensation. Am J Cardiol 67:604–610PubMedCrossRefGoogle Scholar
  74. 74.
    Ellenbogen KA, Mohanty PK, Szentpetery S et al (1989) Arterial baroreflex abnormalities in heart failure: reversal after orthotropic heart transplantation. Circulation 79:51–58PubMedCrossRefGoogle Scholar
  75. 75.
    La Royere MT, Mortara A, Schwartz PJ (1995) Baroreflex sensitivity. J Cardiovasc Electrophysiol 6:761–774CrossRefGoogle Scholar
  76. 76.
    Levy MN, Schwartz PJ (eds) (1994) Vagal control of the heart: experimental basis and clinical implications. Futura, Armonk, NY, pp 644Google Scholar
  77. 77.
    La Royere MT, Specchia G, Mortara A et al (1988) Baroreflex sensitivity, clinical correlates and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 78:816–824CrossRefGoogle Scholar
  78. 78.
    Mortara A, La Royere MT, Pinna DG et al (1997) Arterial baroreflex modulation of heart rate in chronic heart failure. Circulation 96:3450–3458PubMedCrossRefGoogle Scholar
  79. 79.
    Yap YG, Camm AJ (1998) The importance of the autonomic nervous system for risk stratification of post-myocardial infarction patients. Coron Artery Dis 9:353–358PubMedCrossRefGoogle Scholar
  80. 80.
    Ponikowski P, Chua TP, Piepoli M et al (1997) Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 96:2586–2594PubMedCrossRefGoogle Scholar
  81. 81.
    Schmidt G, Malik M, Barthel P et al (1999) Heart-rate turbulence after ventricular premature beats as a predictor of mortality after myocardial infarction. Lancet 353:1390–1396PubMedCrossRefGoogle Scholar
  82. 82.
    Davies LC, Francis DP, Ponikowski P et al (2001) Relation of heart rate and blood pressure turbulence following premature ventricular complexes to baroreflex sensitivity in chronic congestive heart failure. Am J Cardiol 87:737–742PubMedCrossRefGoogle Scholar
  83. 83.
    Lown B, Verrier RL (1976) Neural activity and ventricular fibrillation. N Engl J Med 294:1165–1170PubMedCrossRefGoogle Scholar
  84. 84.
    Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: Fozzard HA, Haber E, Jennings RB, Katz AN, Morgan HD (eds) The heart and cardiovascular system. Raven, New York pp 1343–1403Google Scholar
  85. 85.
    Iuliano S, Fischer SG, Karasik PE et al (2002) QRS duration and mortality in patients with congestive heart failure. Am Heart J 143:1085–1091PubMedCrossRefGoogle Scholar
  86. 86.
    Gottipaty V, Krelis S, Lu F et al (1993) The resting electrocardiogram provides a sensitive and inexpensive marker of prognosis in patients with chronic congestive heart failure. J Am Coll Cardiol 33[Suppl A]:145AGoogle Scholar
  87. 87.
    Grines CL, Bashore TM, Boudoulas H et al (1989) Functional abnormalities in isolated left bundle-branch block. The effect of interventricular asynchrony. Circulation 79:845–853PubMedCrossRefGoogle Scholar
  88. 88.
    Xiao HB, Lee CH, Gibson DG et al (1991) Effect of left-bundle branch block on diastolic function in dilated cardiomyopathy. Br Heart J 66:443–447PubMedCrossRefGoogle Scholar
  89. 89.
    Baldasseroni S, Opasich C, Gorini M et al (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian Network of Congestive Heart Failure. Am Heart J 143:398–405PubMedCrossRefGoogle Scholar
  90. 90.
    Blanc JJ, Etienne Y, Gilard M et al (1997) Evaluation of different ventricular pacing sites in patients with severe heart failure: results of an acute hemodynamic study. Circulation 96:3273–3277PubMedCrossRefGoogle Scholar
  91. 91.
    Saxon LA, Boehmer JP, Hummel J et al (1999) Biventricular pacing in patients with congestive heart failure: two prospective randomized trials. The VIGOR CHF and VENTAK CHF Investigators. Am J Cardiol 83:120D-3CrossRefGoogle Scholar
  92. 92.
    Cazeau S, Leclercq C, Lavergne T et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880PubMedCrossRefGoogle Scholar
  93. 93.
    Day CP, McComb JM, Campbell RW et al (1990) QT dispersion: an indication of arrhythmia risk in patients with long QT intervals. Br Heart J 63:342–344PubMedCrossRefGoogle Scholar
  94. 94.
    Kannel WB, Plehn JF, Cupples LA (1998) Cardiac failure and sudden death in the Framingham Study. Am Heart J 115:869–875CrossRefGoogle Scholar
  95. 95.
    Barr CS, Naas A, Freeman M et al (1994) QT dispersion and sudden unexpected death in chronic heart failure. Lancet 343:327–329PubMedCrossRefGoogle Scholar
  96. 96.
    Pye M, Quinn AC, Cobbe SM (1994) QT interval dispersion: a non-invasive marker of susceptibility to arrhythmia in patients with sustained ventricular arrhythmias ? Br Heart J 71:511–514PubMedCrossRefGoogle Scholar
  97. 97.
    Grimm W, Steder U, Menz V et al (1996) QT dispersion and arrhythmic events in idiopathic dilated cardiomyopathy. Am J Cardiol 78:458–461PubMedCrossRefGoogle Scholar
  98. 98.
    Brendorp B, Elming H, Jun Li et al (2001) QT dispersion has no prognostic information for patients with advanced congestive heart failure and reduced left ventricular systolic function. Circulation 103:831–835PubMedCrossRefGoogle Scholar
  99. 99.
    Fei L, Goldman JH, Prasad K et al (1996) QT dispersion and RR variations on 12-lead ECGs in patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy. Eur Heart J 17:258–263PubMedCrossRefGoogle Scholar
  100. 100.
    Ho KLL, Anderson KM, Kannel WB et al (1993) Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 88:107–115PubMedCrossRefGoogle Scholar
  101. 101.
    Rosenbaum DS, Jackson LE, Smith JM et al (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330:235–241PubMedCrossRefGoogle Scholar
  102. 102.
    Hohnloser SH, Klingenheben T, Li Y-G et al (1998) T wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: prospective comparison with conventional risk markers. J Cardiovasc Electrophysiol 9:1258–1268PubMedCrossRefGoogle Scholar
  103. 103.
    Gold MR, Bloomfield Dm, Anderson KP et al (2000) A comparison of T wave alternans, signal averaged electrocardiogarphy and programmed ventricular stimulation for arrhythmia risk stratification. J Am Coll Cardiol 36:2247–2253PubMedCrossRefGoogle Scholar
  104. 104.
    Klingenheben T, Zabel M, D’Agostino RB et al (2000) Predictive value of T wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356:651–652PubMedCrossRefGoogle Scholar
  105. 105.
    Teerlink JR, Jalaluddin M, Anderson S et al, on behalf of the PROMISE (Prospective Randomized Milrinone Survival Evaluation) Investigators (2000) Ambulatory ventricular arrhythmias among patients with heart failure do not specifically predict an increased risk of sudden death. Circulation 101:40–46PubMedGoogle Scholar
  106. 106.
    Wilson J, Schwartz S, St John Sutton M et al (1983) Prognosis in severe heart failure: relation to hemodynamic measurements and ventricular ectopic activity. J Am Coll Cardiol 2:403–410PubMedCrossRefGoogle Scholar
  107. 107.
    Doval HC, Nul DR, Grancelli HO et al, for the GESICA-GEMA Investigators (1996) Nonsustained ventricular tachycardia in severe heart failure: independent marker of increased mortality due to sudden death. Circulation 94:3198–3203Google Scholar
  108. 108.
    Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685PubMedCrossRefGoogle Scholar
  109. 109.
    Kannel W, Plehn J, Cupples LA (1988) Cardiac failure and sudden death in the Framingham Study. Am Heart J 115:869–875PubMedCrossRefGoogle Scholar
  110. 110.
    Simson MB, Untereker WJ, Spielman SR et al (1983) Relation between late potentials on the body surface and directly recorded fragmanted electrograms in patients with ventricular tachycardia. Am J Cardiol 51:105–112PubMedCrossRefGoogle Scholar
  111. 111.
    Kuchard D, Thorburn C, Sammel N (1987) Prediction of serious arrhythmic events after myocardial infarct: signal averaged electrocardiogram, Holter monitoring, and radionuclide ventriculography. J Am Coll Cardiol 9:531–538CrossRefGoogle Scholar
  112. 112.
    Breithart G, Schwarzmaier M, Borgreffe M et al (1983) Prognostic significance of late ventricular potentials after acute myocardial infarction. Eur Heart J 4:487–495Google Scholar
  113. 113.
    Galinier M, Albenque J-P, Afchar N et al (1996) Prognostic value of late potentials in patients with congestive heart failure. Eur Heart J 17:264–271PubMedCrossRefGoogle Scholar
  114. 114.
    Middlekauff H, Stevenson W, Woo M et al (1990) Comparison of frequency of late potentials in idiopathic dilated cardiomyopathy and ischemic cardiomyopathy with advanced congestive heart failure and their usefulness in predicting sudden death. Am J Cardiol 66:1113–1117PubMedCrossRefGoogle Scholar
  115. 115.
    Mancini D, Wong K, Simson M (1993) Prognostic value of an abnormal signal-averaged electrocardiogram in patients with non-ischemic congestive cardiomyopathy. Circulation 87:1083–1092PubMedCrossRefGoogle Scholar
  116. 116.
    Silverman ME, Pressel MD, Brackett JC et al (1995) Prognostic value of the signal-averaged electrocardiogram and a prolonged QRS in ischemic and nonischemic cardiomyopathy. Am J Cardiol 75:460–464PubMedCrossRefGoogle Scholar
  117. 117.
    Poll DS, Marchlinski FE, Buxton AE et al (1986) Usefulness of programmed stimulation in idiopathic dilated cardiomyopathy. Am J Cardiol 58:992–997PubMedCrossRefGoogle Scholar
  118. 118.
    Stamato NJ, O’Connell JB, Murdock DK et al (1986) The response of patients with complex ventricular arrhythmias secondary to dilated cardiomyopathy to programmed ventricular stimulation. Am J Cardiol 112:505–508Google Scholar
  119. 119.
    Das SK, Morady F, DiCarlo L Jr et al (1986) Prognostic usefulness of programmmed ventricular stimulation in idiopathic dilated cardiomyopathy without symptomatic ventricular arrhythmias. Am J Cardiol 58:998–1000PubMedCrossRefGoogle Scholar
  120. 120.
    Buxton AE, Lee KL, DiCarlo L et al (2000) Electrophysiological testing to identify patients with coronary artery disease who are at risk for sudden death. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 342:1937–1945PubMedCrossRefGoogle Scholar
  121. 121.
    Schmidt H, Hurst T, Coch M et al (2000) Nonsustained, asymptomatic ventricular tachycardia in patients with coronary artery disease: Prognosis and incidence of sudden death of patients who are noninducible by electrophysiologic testing. Pacing Clin Electrophysiol 23:1220–1225CrossRefGoogle Scholar
  122. 122.
    Zugck C, Krüger C, Kell R et al (2001) Risk stratification in middle-aged patients with congestive heart failure: prospective comparison of the Heart Failure Survival Score (HFSS) and a simplified two-variable model. Eur J Heart Failure 3:577–585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • I. Can
    • 1
  • K. Aytemir
    • 1
  • A. Oto
    • 1
  1. 1.Department of CardiologyFaculty of Medicine Hacettepe UniversityAnkaraTurkey

Personalised recommendations