Antineoplastic and Antiangiogenic Actions of Somatostatin Analogs

  • L. Buscail
Conference paper


Somatostatin is a tetradecapeptide which participates in a variety of biological processes, including inhibition of exocrine and hormonal secretions and cell proliferation (Lamberts, 1991; Pollak and Serially, 1998). These properties are used for the treatment of hormone-producing pituitary or gastroen-teropancreatic tumors by stable somatostatin analogs. Thus, hormonal suppression is produced in patients with acromegaly, or with neuroendocrine tumors such as insulinoma, glucagonoma, gastrinoma, vipoma or carcinoid syndrome. In some patients analog therapy leads to an inhibition of tumor growth. Somatostatin exerts an antiproliferative effect, either by indirectly inhibiting hormone and growth factor release, or by an inhibition of angio-genesis, or by acting directly on neoplastic cells. Somatostatin exerts its biological effects by interacting with specific receptors, which have been detected by binding assay or autoradiography in various human tumors and normal tissues. These proteins are expressed in a tissue-specific manner. A total of five somatostatin receptor subtypes (sst1–sst5) and one splice variant have been cloned from human, mouse and rat (Bell and Reisine, 1993; Hoyer et al., 1995). After expression of sst1–sst5 gene clones in mammalian cell lines we and others demonstrated a distinct profile for binding of clinically employed somatostatin analogs, such as SMS 201–995 (octreotide), BIM 23014 (lan-reotide) and RC-160 (vapreotide).


Pancreatic Carcinoma Human Pancreatic Cancer Cell Growth Factor Release Octreotide Acetate Pancreatic Cancer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albini A., Florio T. and Giunciuglio D. (1999). Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis. FASEB J, 13, 647–655.PubMedGoogle Scholar
  2. Aparicio T., Ducreux M. and Baudin E. (2001). Antitumour activity of somatostatin analogues in progressive metastatic neuroendocrine tumours. Eur J Cancer, 37, 1014–1019.PubMedCrossRefGoogle Scholar
  3. Arnold R., Simon B. and Wied M. (2000). Treatment of neuroendocrine GEP tumours with somatostatine analogues. Digestion, 62 (suppl 1), 84–91.PubMedCrossRefGoogle Scholar
  4. Bell G.I. and Reisine, T. (1993). Molecular biology of somatostatin receptors. Trends Neurosci, 16, 34–38.PubMedCrossRefGoogle Scholar
  5. Benali N., Cordelier R, Calise D., Pages P., Rochaix P., Nagy A., Esteve J. P., Pour P. M., Schally A.V., Vaysse N., Susini C. and Buscail L. (2000). Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc Natl Acad Sci USA, 97, 9180–9185.PubMedCrossRefGoogle Scholar
  6. Buscail L., Delesque N., Esteve J.P., Saint-Laurent N., Prats H., Clerc P., Robberecht P., Bell G.I., Liebow C, Schally A.V., Vaysse N. and Susini C. (1994). Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTRi and SSTR2. Proc Natl Acad Sci USA, 91, 2315–2319.PubMedCrossRefGoogle Scholar
  7. Buscail L., Esteve J.P., Saint-Laurent N., Bertrand V., Reisine T., O’Carroll, A.M., Bell G.I., Schally A.V., Vaysse N. and Susini C. (1995). Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms. Proc Natl Acad Sci USA, 92, 1580–1584.PubMedCrossRefGoogle Scholar
  8. Cordelier P., Estève J.P., Bousquet C., Delesque N., O’Carroll A.-M., Schally A.V., Vaysse N., Susini C. and Buscail L. (1997). Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc Nat Acad Sci USA, 94, 9343–9348.PubMedCrossRefGoogle Scholar
  9. Danesi R., Agen C. and Benelli U. (1997). Inhibition of experimental angiogenesis by the somatostatin octreotide acetate (SMS 201–995).Clin Cancer Res, 3, 265–272.PubMedGoogle Scholar
  10. Delesque N., Buscail L., Esteve J.P., Saint-Laurent N., Muller C., Weckbecker G., Bruns C., Vaysse N. and Susini C. (1997). Sst, Somatostatin receptor expression reverses tumorigenicity of human pancreatic cancer cells. Cancer Res, 57, 956–962.PubMedGoogle Scholar
  11. Hoyer D., Bell G.I., Berelowitz M., Epelbaum J., Feniuk W., Humphrey P.P., O’Carroll A.M., Patel Y.C., Schonbrunn A. and Taylor J.E. (1995). Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci, 16, 86–88.PubMedCrossRefGoogle Scholar
  12. Lamberts S.W., Krenning E.P. and Reubi J.C. (1991). The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev, 12, 450–482.PubMedCrossRefGoogle Scholar
  13. Lichtenauer-Kaligis E.G., Van Hagen P.M., Lamberts S.W. and Hofland L.J. (2000). Somatostatin receptor subtypes in human immune cells. Eur J Endocrinol, 143 (suppl 1), S21–S25.PubMedCrossRefGoogle Scholar
  14. Lopez F., Esteve J.P., Buscail L., Delesque N., Saint-Laurent N., Theveniau M., Nahmias C., Vaysse N. and Susini C. (1997). The tyrosine phosphatase SHP-1 associates with the sst2, somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chern, 272, 24448–24454.CrossRefGoogle Scholar
  15. Plonowski A., Schally A.V., Koppan M., Nagy A., Arencibia J.M., Csernus B. and Halmos G. (2001). Inhibition of the UCI-107 human ovarian carcinoma cell line by a targeted cytotoxic analog of somatostatin, AN-238.Cancer, 92, 1168–1176.PubMedCrossRefGoogle Scholar
  16. Pollak M.N. and Schally A.V. (1998). Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med, 217, 143–152.PubMedGoogle Scholar
  17. Rochaix P., Delesque N., Esteve J. P., Saint-Laurent N., Voight J.J., Vaysse N., Susini C. and Buscail L. (1999). Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2, gene transfer. Hum Gene Ther, 10, 995–1008.PubMedCrossRefGoogle Scholar
  18. Rogers B.E., Zinn K.R., Lin C.Y., Chaudhuri T.R. and Buchsbaum D.J. (2002). Targeted radiotherapy with [(90)Y)-SMT 487 in mice bearing human non-small cell lung tumor xenografts induced to express human somatostatin receptor subtype 2 with an adenoviral vector. Cancer, 94 (suppl 4), 1298–1305.PubMedCrossRefGoogle Scholar
  19. Szepeshazi K., Schally A.V., Halmos G., Sun B., Hebert F., Csernus B. and Nagy A. (2001). Targeting of cytotoxic somatostatin analog AN-238 to somatostatin receptor subtypes 5 and/or 3 in experimental pancreatic cancers. Clin Cancer Res, 7, 2854–2861.PubMedGoogle Scholar
  20. Vernejoul F., Faure P., Benali N., Calise D., Tiraby G., Pradayrol L., Susini C. and Buscail L. (2002). Antitumor effect of in vivo somatostatin receptor sst, gene transfer in primary and metastatic pancreatic cancer models. Cancer Res, 62, 6124–6131.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • L. Buscail

There are no affiliations available

Personalised recommendations