Physiology and Pharmacology of Somatostatin and Its Receptors

  • J. Epelbaum
Conference paper


Somatostatin is an “old” neuropeptide, discovered 30 years ago as a hypothalamic neurohormone for its ability to inhibit growth hormone secretion (Brazeau et al, 1972). Later, it was found to be widely distributed in other brain regions, in which it fulfills a neuromodulatory role. It is also located in several organs of the gastrointestinal tract, where it can act as a paracrine factor or as a true circulating factor (Fig. 1).


Phosphotyrosine Phosphatase Neuromodulatory Role Arachidonate Release System Basal Ganglion Inhibit Growth Hormone Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbar M., Okajima F., Tomura H., Majid M.A., Yamada Y., Seino S. and Kondo Y. (1994). Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1-5, in transfected COS-7 cells. FEBS Lett, 348, 192–196.PubMedCrossRefGoogle Scholar
  2. Bass R.T., Buckwalter B.L., Patel B.P., Pausch M.H., Price L.A., Strnadt J. and Hadcock J.R. (1996). Identification and characterization of novel somatostatin antagonists. Mol Pharmacol, 50, 709–715.PubMedGoogle Scholar
  3. Bass R.T., Buckwalter B.L., Patel B.P., Pausch M.H., Price L.A., Strnadt J. and Hadcock J.R. (1997). Erratum. Mol Pharmacol, 51,170.Google Scholar
  4. Bito H., Mori M., Sakanaka C, Takano T., Honda Z., Gotoh Y., Nishida E. and Shimizu T. (1994). Functional coupling of SSTR4, a major hippocampal somatostatin receptor, to adenylate cyclase inhibition, arachidonate release and activation of the mitogen-acti-vated protein kinase cascade. J Biol Chem, 269, 12722–12730.PubMedGoogle Scholar
  5. Brazeau P., Vale W., Burgus R., Ling N., Rivier J. and Guillemin R. (1972). Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 129, 77–79.Google Scholar
  6. Buscail L., Delesque N., Esteve J.P., Saint-Laurent N., Prats H., Clerc P., Robberecht P., Bell G.I., Liebow C., Schally A.V. et al. (1994). Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTRi and SSTR2. Proc Natl Acad Sei USA, 91, 2315–2319.CrossRefGoogle Scholar
  7. Csaba Z. and Dournaud P. (2001). Cellular biology of somatostatin receptors. Neuropeptides, 35, 1–23.PubMedCrossRefGoogle Scholar
  8. de Herder W.W. and Lamberts S.W. (2002). Somatostatin and somatostatin analogues: diagnostic and therapeutic uses. Curr Opin Oncol, 14, 53–57.PubMedCrossRefGoogle Scholar
  9. de Lecea L., Criado J.R., Prospero-Garcia O., Gautvik K.M., Schweitzer P., Danielson P.E., Dunlop CL., Siggins G.R., Henriksen S.J. and Sutcliffe J.G. (1996). A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature, 381, 242–245.PubMedCrossRefGoogle Scholar
  10. Dournaud P., Slama A., Beaudet A. and Epelbaum J. (2000). Somatostatin receptors. In Handbook of Chemical Neuroanatomy, vol 16, part I, eds. Bjorklund A., Hökfelt T. and Quirion R. Elsevier, Amsterdam, pp. 1–44.Google Scholar
  11. Florio T., Arena S., Thellung S., Iuliano R., Corsaro A., Massa A., Pattarozzi A., Bajetto A., Trapasso R, Fusco A. and Schettini G. (2001). The activation of the phosphotyrosine phosphatase eta (r-PTP eta) is responsible for the somatostatin inhibition of PC CI3 thyroid cell proliferation. Mol Endocrinol, 15, 1838–1852.PubMedCrossRefGoogle Scholar
  12. Fujii Y., Gonoi T., Yamada Y., Chihara K., Inagaki N. and Seino S. (1994). Somatostatin receptor subtype SSTR2 mediates the inhibition of high-voltage-activated calcium channels by somatostatin and its analogue SMS 201-995. FEBS Lett, 355, 117–120.PubMedCrossRefGoogle Scholar
  13. Handel M., Schulz S., Stanarius A., Schreff M., Erdtmann-Vourliotis M., Schmidt H., Wolf G. and Hollt V. (1999). Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 89, 909–926.PubMedCrossRefGoogle Scholar
  14. Helboe L., Stidsen CE. and Moller M. (1998). Immunohistochemical and cytochemical localization of the somatostatin receptor subtype ssti in the somatostatinergic par-vocellular neuronal system of the rat hypothalamus. J Neurosci, 18, 4938–4945.PubMedGoogle Scholar
  15. Hocart S.J., Jain R., Murphy W.A., Taylor J.E. and Coy D.H. (1999). Highly potent cyclic disulfide antagonists of somatostatin. J Med Chem, 42, 1863–1871.PubMedCrossRefGoogle Scholar
  16. Hofland L.J. and Lamberts S.W. (2003). The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev, 24, 28–47.PubMedCrossRefGoogle Scholar
  17. Hoyer D., Bell G.I., Berelowitz M., Epelbaum J., Feniuk W, Humphrey P.P., O’Carroll A.M., Patel Y.C., Schonbrunn A., Taylor J.E. et al. (1995). Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sei, 16, 86–88.CrossRefGoogle Scholar
  18. Kreienkamp HJ., Akgun E., Baumeister H., Meyerhof W. and Richter D. (1999). Somatostatin receptor subtype 1 modulates basal inhibition of growth hormone release in somatotrophs. FEBS Lett, 462, 464–466.PubMedCrossRefGoogle Scholar
  19. Kreienkamp HJ., Soltau M., Richter D. and Bockers T. (2002). Interaction of G-protein-coupled receptors with synaptic scaffolding proteins. Biochem Soc Trans, 30, 464–468.PubMedCrossRefGoogle Scholar
  20. Kulaksiz H., Eissele R., Rossler D., Schulz S., Hollt V., Cetin Y. and Arnold R. (2002). Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut, 50, 52–60.PubMedCrossRefGoogle Scholar
  21. Liapakis G., Hoeger C, Rivier J. and Reisine T. (1996). Development of a selective agonist at the somatostatin receptor subtype sstri. J Pharmacol Exp Ther, 276, 1089–1094.PubMedGoogle Scholar
  22. Low M.J., Otero-Corchon V., Parlow A.F., Ramirez J.L., Kumar U., Patel Y.C. and Rubinstein M. (2001). Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth. J Clin Invest, 107, 1571–1580.PubMedCrossRefGoogle Scholar
  23. Myers R.D. (1994). Neuroactive peptides: unique phases in research on mammalian brain over three decades. Peptides, 15, 367–381.PubMedCrossRefGoogle Scholar
  24. Patel Y.C, Greenwood M.T., Warszynska A., Panetta R. and Srikant C.B. (1994). All five cloned human somatostatin receptors (hSSTRi-5) are functionally coupled to adeny-lyl cyclase. Biochem Biophys Res Commun, 198, 605–612.PubMedCrossRefGoogle Scholar
  25. Pfeiffer M., Koch T., Schroder H., Klutzny M., Kirscht S., Kreienkamp HJ., Hollt V. and Schulz S. (2001). Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem, 276, 14027–14036.PubMedGoogle Scholar
  26. Pfeiffer M., Koch T., Schroder H., Laugsch M., Hollt V. and Schulz S. (2002). Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem, 277, 19762–19772.PubMedCrossRefGoogle Scholar
  27. Reisine T., Bell G.I. (1995). Molecular biology of somatostatin receptors. Endocr Rev, 427–442.Google Scholar
  28. Reubi J.C., Schaer J.C., Wenger S., Hoeger C, Erchegyi J., Waser B. and Rivier J. (2000). SST3-selective potent peptidic somatostatin receptor antagonists. Proc Natl Acad Sei USA, 97, 13973–13978.CrossRefGoogle Scholar
  29. Rivier J.E., Hoeger C, Erchegyi J., Gulyas J., DeBoard R., Craig A.G., Koerber S.C., Wenger S., Waser B., Schaer J.C. and Reubi J.C. (2001). Potent somatostatin undecapeptide agonists selective for somatostatin receptor 1 (ssti). J Med Chem, 44, 2238–2246.PubMedCrossRefGoogle Scholar
  30. Rocheville M., Lange D.C., Kumar U., Sasi R., Patel R.C., Patel Y.C. (2000a). Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem, 275, 7862–7869.CrossRefGoogle Scholar
  31. Rocheville M., Lange D.C., Kumar U., Patel S.C., Patel R.C. and Patel Y.C. (2000b). Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science, 288, 154–157.CrossRefGoogle Scholar
  32. Rohrer S.P., Birzin E.T., Mosley R.T., Berk S.C., Hutchins S.M., Shen D.M., Xiong Y, Hayes E.C., Parmar R.M., Foor F., Mitra S.W., Degrado S.J., Shu M., Klopp J.M., Cai S.J., Blake A., Chan WW, Pasternak A., Yang L., Patchett A.A., Smith R.G., Chapman K.T. and Schaeffer J.M. (1998). Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science, 282, 737–740.PubMedCrossRefGoogle Scholar
  33. Schulz S., Handel M., Schreff M., Schmidt H. and Hollt V. (2000). Localization of five somatostatin receptors in the rat central nervous system using subtype-specific antibodies. J Physiol Paris, 94, 259–264.PubMedCrossRefGoogle Scholar
  34. Schreff M., Schulz S., Handel M., Keilhoff G., Braun H., Pereira G., Klutzny M., Schmidt H., Wolf G. and Hollt V. (2000). Distribution, targeting, and internalization of the sst4 somatostatin receptor in rat brain. J Neurosci, 20, 3785–3797.PubMedGoogle Scholar
  35. Strowski M.Z., Parmar R.M., Blake A.D. and Schaeffer J.M. (2000). Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology, 141, 111–117.PubMedCrossRefGoogle Scholar
  36. Strowski M.Z., Dashkevicz M.P., Parmar R.M., Wilkinson H., Kohler M., Schaeffer J.M. and Blake A.D. (2002). Somatostatin receptor subtypes 2 and 5 inhibit corticotropin-releasing hormone-stimulated adrenocorticotropin secretion from AtT-20 cells. Neuroendocrinology, 75, 339–346.PubMedCrossRefGoogle Scholar
  37. Strowski M.Z., Kohler M., Chen H.Y., Trumbauer M.E., Li Z., Szalkowski D., Gopal-Truter S., Fisher J.K., Schaeffer J.M., Blake A.D., Zhang B.B. and Wilkinson H.A. (2003). Somatostatin receptor subtype 5 regulates insulin secretion and glucose homeostasis. Mol Endocrinol, 17, 93–106.PubMedCrossRefGoogle Scholar
  38. Tulipano G., Soldi D., Bagnasco M., Culler M.D., Taylor J.E., Cocchi D. and Giustina A. (2002). Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology, 143, 1218–1224.PubMedCrossRefGoogle Scholar
  39. Viollet C, Vaillend C, Videau C, Bluet-Pajot M.T., Ungerer A., L’Heritier A., Kopp C, Potier B., Billard J., Schaeffer J., Smith R.G., Rohrer S.P., Wilkinson H., Zheng H. and Epelbaum J. (2000). Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci, 12, 3761–3770.PubMedCrossRefGoogle Scholar
  40. Zeyda T., Diehl N., Paylor R., Brennan M.B. and Hochgeschwender U. (2001). Impairment in motor learning of somatostatin null mutant mice. Brain Res, 906, 107–114.PubMedCrossRefGoogle Scholar
  41. Zheng H., Bailey A., Jiang M.H., Honda K., Chen H.Y., Trumbauer M.E., Van der Ploeg L.H., Schaeffer J.M., Leng G. and Smith R.G. (1997). Somatostatin receptor subtype 2 knockout mice are refractory to growth hormone-negative feedback on arcuate neurons. Mol Endocrinol, 11, 1709–1717.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2003

Authors and Affiliations

  • J. Epelbaum

There are no affiliations available

Personalised recommendations