Skip to main content

Polyphenolic Antioxidants and Health

  • Chapter

Abstract

Oxidative stress is believed to play a pivotal role in several physiologic (aerobic metabolism, immunologic responses, cellular signaling, regulation of gene expression, cell differentiation) [1] and pathologic (atherosclerosis, tumorigenesis, neurodegenerative diseases, etc.) processes. Antioxidants react with oxygen free radicals protecting the cells from oxidative stress damage. Polyphenols are the most widely known antioxidant nutrients. Polyphenols are a class of natural, synthetic, and semisynthetic substances characterized by the presence of large multiples of phenol units. The term polyphenols was proposed in 1962 by the phytochemists White, Bate-Smith, Swain and Haslam [2]. They defined polyphenols as “water-soluble phenolic compounds having molecular weights between 500 and 3000 (Da). Besides giving the usual phenolic reactions, they have special properties such as the ability to precipitate alkaloids, gelatin and other proteins from solution” [2]. Polyphenols, in the form of flavonoids, are broadly classified into anthocyanidins (e.g., cyanidin, delphinidin, malvidin), flavanols (e.g., catechin, epicatechin), flavonols (e.g., quercetin, fisetin), and flavones (e.g., luteolin) [3]. Natural polyphenols are prevalent in cocoa, fruits, vegetables, wine and tea. Flavonoids account for two thirds of the total polypenolic daily intake (approximately 1 g) [4]. After oral ingestion, flavonols undergo a biotransformation from the gut microflora generating a large variety of metabolites [4, 5]; the maximum plasma concentration of flavonols rarely exceeds 1 μM [4, 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  2. Quideau S, Deffieux D, Douat-Casassus C et al (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 50:586–621

    Article  PubMed  CAS  Google Scholar 

  3. Obrenovich ME, Nair NG, Beyaz A et al (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13:631–643

    Article  PubMed  CAS  Google Scholar 

  4. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    PubMed  CAS  Google Scholar 

  5. Schroeter H, Heiss C, Balzer J et al (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103:1024–1029

    Article  PubMed  CAS  Google Scholar 

  6. Lopez AD, Mathers CD, Ezzati M et al (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  7. Bayard V, Chamorro F, Motta J et al (2007) Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci 4:53–58

    Article  PubMed  CAS  Google Scholar 

  8. Arts IC, Hollman PC, Feskens EJ et al (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74:227–232

    PubMed  CAS  Google Scholar 

  9. Buijsse B, Feskens EJ, Kok FJ et al (2006) Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch Intern Med 166:411–417

    PubMed  Google Scholar 

  10. Buijsse B, Weikert C, Drogan D et al (2010) Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur Heart J 31:1616–1623

    Article  PubMed  CAS  Google Scholar 

  11. Arts IC, Jacobs DR Jr, Harnack LJ et al (2001) Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 12:668–675

    Article  PubMed  CAS  Google Scholar 

  12. Hertog MG, Feskens EJ, Hollman PC et al (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011

    Article  PubMed  CAS  Google Scholar 

  13. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526

    Article  PubMed  CAS  Google Scholar 

  14. Artaud-Wild SM, Connor SL, Sexton G et al (1993) Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 88:2771–2779

    Article  CAS  Google Scholar 

  15. Gronbaek M, Becker U, Johansen D et al (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann Intern Med 133:411–419

    PubMed  CAS  Google Scholar 

  16. Janszky I, Mukamal KJ, Ljung R et al (2009) Chocolate consumption and mortality following a first acute myocardial infarction: the Stockholm Heart Epidemiology Program. J Intern Med 266:248–257

    Article  PubMed  CAS  Google Scholar 

  17. Corti R, Flammer AJ, Hollenberg NK et al (2009) Cocoa and cardiovascular health. Circulation 119:1433–1441

    Article  PubMed  Google Scholar 

  18. Taubert D, Roesen R, Lehmann C et al (2007) Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA 298:49–60

    Article  PubMed  CAS  Google Scholar 

  19. Erlund I, Koli R, Alfthan G et al (2008) Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 87:323–331

    PubMed  CAS  Google Scholar 

  20. Gilchrist M, Shore AC, Benjamin N (2011) Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc Res 89:492–498

    Article  PubMed  CAS  Google Scholar 

  21. Taubert D, Roesen R, Schomig E (2007) Effect of cocoa and tea intake on blood pressure: a meta-analysis. Arch Intern Med 167:626–634

    Article  PubMed  CAS  Google Scholar 

  22. Burton-Freeman B, Linares A, Hyson D et al (2010) Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J Am Coll Nutr 29:46–54

    PubMed  CAS  Google Scholar 

  23. Baba S, Osakabe N, Kato Y et al (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85:709–717

    PubMed  CAS  Google Scholar 

  24. Kondo K, Hirano R, Matsumoto A et al (1996) Inhibition of LDL oxidation by cocoa. Lancet 348:1514

    Article  PubMed  CAS  Google Scholar 

  25. Brasnyo P, Molnar GA, Mohas M et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106:383–389

    Article  PubMed  CAS  Google Scholar 

  26. Grassi D, Desideri G, Necozione S et al (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming highpolyphenol dark chocolate. J Nutr 138:1671–1676

    PubMed  CAS  Google Scholar 

  27. Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105:2107–2111

    Article  PubMed  Google Scholar 

  28. Violi F, Marino R, Milite MT et al (1999) Nitric oxide and its role in lipid peroxidation. Diabetes Metab Res Rev 15:283–288

    Article  PubMed  CAS  Google Scholar 

  29. Cave AC, Brewer AC, Narayanapanicker A et al (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  PubMed  CAS  Google Scholar 

  30. Pignatelli P, Di Santo S, Buchetti B et al (2006) Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J 20:1082–1089

    Article  PubMed  CAS  Google Scholar 

  31. Heiss C, Keen CL, Kelm M (2010) Flavanols and cardiovascular disease prevention. Eur Heart J 31:2583–2592

    Article  PubMed  CAS  Google Scholar 

  32. Heitzer T, Schlinzig T, Krohn K et al (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104(22):2673–2678

    Article  PubMed  CAS  Google Scholar 

  33. Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349

    Article  PubMed  Google Scholar 

  34. Bendall JK, Rinze R, Adlam D et al (2007) Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelialtargeted Nox2 transgenic mice. Circ Res 100:1016–1025

    Article  PubMed  CAS  Google Scholar 

  35. Oelze M, Warnholtz A, Faulhaber J et al (2006) NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/-mice. Arterioscler Thromb Vasc Biol 26:1753–1759

    Article  PubMed  CAS  Google Scholar 

  36. Jung O, Schreiber JG, Geiger H et al (2004) gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109:1795–1801

    Article  PubMed  CAS  Google Scholar 

  37. Violi F, Sanguigni V, Carnevale R et al (2009) Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 120:1616–1622

    Article  PubMed  CAS  Google Scholar 

  38. Heiss C, Kleinbongard P, Dejam A et al (2005) Acute consumption of flavanol-rich cocoa and the reversal of endothelial dysfunction in smokers. J Am Coll Cardiol 46:1276–1283

    Article  PubMed  CAS  Google Scholar 

  39. Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102:248–257

    PubMed  CAS  Google Scholar 

  40. Violi F, Pignatelli P, Basili S (2010) Nutrition, supplements, and vitamins in platelet function and bleeding. Circulation 121:1033–1044

    Article  PubMed  Google Scholar 

  41. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  PubMed  CAS  Google Scholar 

  42. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3:34–42

    PubMed  CAS  Google Scholar 

  43. Yang CS, Wang X, Lu G et al (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  PubMed  CAS  Google Scholar 

  44. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    Article  PubMed  CAS  Google Scholar 

  45. Zhang F, Shi JS, Zhou H et al (2010) Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol 78:466–477

    Article  PubMed  CAS  Google Scholar 

  46. Mandel SA, Amit T, Weinreb O et al (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14:352–365

    Article  PubMed  CAS  Google Scholar 

  47. Koh SH, Lee SM, Kim HY et al (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 395:103–107

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Loffredo, L., Violi, F. (2012). Polyphenolic Antioxidants and Health. In: Conti, A., Paoletti, R., Poli, A., Visioli, F. (eds) Chocolate and Health. Springer, Milano. https://doi.org/10.1007/978-88-470-2038-2_6

Download citation

Publish with us

Policies and ethics