Advertisement

Industrial Treatment of Cocoa in Chocolate Production: Health Implications

  • Herwig Bernaert
  • Ieme Blondeel
  • Leen Allegaert
  • Tobias Lohmueller

Abstract

Cocoa has a rich history of medicinal and ritual use. The medicinal use of cocoa originated among the Olmec, Maya and Aztec civilizations which bloomed in the geographical region that we now call Central America. According to the best estimates of archaeologists, the ancient Maya, are believed to have cultivated the cacao tree for the very first time around 1000 BC. The Aztecs regarded cocoa as a sacred plant, used it in a highly esteemed “drink of the gods” and valued cocoa beans as currency. It was Hernán Cortés, a Spanish conquistador, who brought cocoa to Europe at the beginning of the 16th century.

Keywords

Cocoa Butter Oxygen Radical Absorbance Capacity Acetic Acid Bacterium Cocoa Bean Dark Chocolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dillinger TL, Barriga P, Escarcega S et al (2000) Food of the gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 130(8S Suppl):2057S–2072SPubMedGoogle Scholar
  2. 2.
    Wollgast J, Anklam E (2000) Polyphenols in chocolate: Is there a contribution to human health. Food Res Int 33:449–459CrossRefGoogle Scholar
  3. 3.
    Schroeter H, Heiss C, Balzer J et al (2006) Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. PNAS 103:1024–1029PubMedCrossRefGoogle Scholar
  4. 4.
    Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A et al (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55:3926–3935PubMedCrossRefGoogle Scholar
  5. 5.
    Lee KW, Kim YJ, Lee HJ et al (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 7292–7295Google Scholar
  6. 6.
    Vinson JA, Proch J, Zubik L (1999) Phenol antioxidant quantity and quality in foods: Cocoa, dark chocolate, and milk chocolate. J Agric Food Chem 47(12):4821–4824PubMedCrossRefGoogle Scholar
  7. 7.
    Scalbert A, Manach C, Morand C et al (2005) Dietary polyphenols and the prevention of diseases. Crit Revs Food Sci Nutr 45:287–306CrossRefGoogle Scholar
  8. 8.
    Roura E, Andrés-Lacueva C, Estruch R et al (2007) Milk does not affect the bioavailability of cocoa powder flavanoid in healthy human. Ann Nutr Metab 51:493–498PubMedCrossRefGoogle Scholar
  9. 9.
    Taubert D, Roesen R, Lehmann C et al (2007) Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide. JAMA 298:49–60PubMedCrossRefGoogle Scholar
  10. 10.
    Hooper L, Kroon PA, Rimm EB et al (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am J Clin Nutr 88:38–50PubMedGoogle Scholar
  11. 11.
    Ried K, Sullivan T, Fakler P et al (2010) Does chocolate reduce blood pressure? A metaanalysis. BMC Medicine 36Google Scholar
  12. 12.
    Desch S, Schmidt J, Kobler D et al (2010) Effect of cocoa products on blood pressure: Systematic review and meta-analysis. Am J Hypertens 23(1):97–103PubMedCrossRefGoogle Scholar
  13. 13.
    Desch S, Kobler D, Schmidt J et al (2010) Low vs higher-dose dark chocolate and blood pressure in cardiovascular high risk patients. Am J HypertensGoogle Scholar
  14. 14.
    Smit HJ (2011) Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol 200:201–234PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez AS, Dittner PS (eds) (1995) Cocoa fermentation. Biotechnology, 2 edn, vol 9, VCH Publishers Inc, New York pp 561–577Google Scholar
  16. 16.
    Hoskin JC, Dimick PS (1995) Non-enzymatic browing of foods. In: Beckett TS (ed) Psychochemical aspects of food processing. Blackie Academic Professionals Surrey, UK, pp 65–67CrossRefGoogle Scholar
  17. 17.
    Wollgast J (2004) The contents and effects of polyphenols in chocolate (qualitative and quantitative analyses of polyphenols in chocolate and chocolate raw products as well as evaluation of potential implications of chocolate consumption in human health). PhD, Justus Liebig University, GiessenGoogle Scholar
  18. 18.
    Andres-Lacueva MM, Khan N et al (2008) Flavanol and flavonol contents of cocoa powder products: Influence of the manufacturing process. J Agric Food Chem 56(9):3111–3117PubMedCrossRefGoogle Scholar
  19. 19.
    Roura E, Almajano MP, Mata Bilbao ML et al (2007) Human urine: Epicatechin metabolites and antioxidant activity after cocoa beverage intake. Free Rad Res 41:943–949CrossRefGoogle Scholar
  20. 20.
    Taubert D, Roesen R, Schömig E (2007) Effect of cocoa and tea intake on blood pressure. Arch Intern Med 167:626–634PubMedCrossRefGoogle Scholar
  21. 21.
    Horiuchi M, Osakabe N, Takizawa T et al (2001) The inhibitory effect of cacao liquor crude polyphenols (clp) on experimental arteriosclerosis with calcification in rat soft tissue. J Health Sci 47:208–212CrossRefGoogle Scholar
  22. 22.
    ICCO (2010) ICCO executive committee reportGoogle Scholar
  23. 23.
    Euromonitor International (2010) Cocoa — a rocky road for cocoa ingredients?Google Scholar
  24. 24.
    Cuatrecasas J (1964) Cacao and its allies: A taxonomic revision of the genus theobroma. Contrib US Herbarium 35(35):379–614Google Scholar
  25. 25.
    Motamayor JC, Risterucci AM, Lopez PA et al (2002) Cacao domestication I: The origin of the cacao cultivated by the mayas. Heredity 89(5):380–386PubMedCrossRefGoogle Scholar
  26. 26.
    Bartley MK (2005) Preventing venous thromboembolism in medical/surgical patients. Nursing Suppl:16–18Google Scholar
  27. 27.
    Anon JB (2005) Current management of acute bacterial rhinosinusitis and the role of moxifloxacin. Clin Infect Dis 41(Suppl 2):S167–176PubMedCrossRefGoogle Scholar
  28. 28.
    Dand R (1993) The international cocoa trade. Woodhead Publishing, p 383Google Scholar
  29. 29.
    Eskes AB (2001) Cocoa. In: Charrier A et al (eds) Tropical plant breeding. CIRAD, France, pp 78–105Google Scholar
  30. 30.
    Figueira A, Colleoni Neto R, Caetano Junior EM et al (1993) Endoscopic sclerotherapy of bleeding esophagogastric varices and functional liver status. Rev Assoc Med Bras 39(4):213–216PubMedGoogle Scholar
  31. 31.
    Beckett JM, Hartley TF, Ball MJ (2009) Evaluation of the randox colorimetric serum copper and zinc assays against atomic absorption spectroscopy. Ann Clin Biochem 46(Pt 4):322–326PubMedCrossRefGoogle Scholar
  32. 32.
    Afoakwa EO, Kongor EJ, Annor GA et al (2010) Acidification and starch behaviour during co-fermentation of cassava (Manihot esculenta Crantz) and soybean (Glycine max Merr) into gari, an African fermented food. Int J Food Sci Nutr 61(5):449–462PubMedCrossRefGoogle Scholar
  33. 33.
    Schwan ET, Robertson BD, Brade H et al (1995) Gonococcal rfaf mutants express rd2 chemotype lps and do not enter epithelial host cells. Mol Microbiol 15(2):267–275PubMedCrossRefGoogle Scholar
  34. 34.
    Schwan RF, Rose AH, Board RG (1995) Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp. J Appl Bacteriol Supplement 79:96S–107SGoogle Scholar
  35. 35.
    Biehl B (1973) Changes in subcellular structure in the codyledones of cocoa seeds during fermentation and drying. Z Lebensm Unters Forsch 153:137–147CrossRefGoogle Scholar
  36. 36.
    Voigt JB, Heinrich B, Kamaruddin H et al (1994) In-vitro formation of cocoa-spesific aroma precursors: Aroma-relates peptides generated from cocoa seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem 49:173–180CrossRefGoogle Scholar
  37. 37.
    Stoll LR, Niemenak C, Sukha DA et al (2006) Formation of bitter tasting g-aminobutyric acid (gaba) in the course of fermentation and germination process. 15th International Cocoa Research Conference, 9–14 October, San Jose, Costa Rica, Poster Nr. 60Google Scholar
  38. 38.
    Bytof G, Biehl B, Heinrichs H et al (1994) Specificity and stability of the carboxypeptidase activity in ripe, ungerminated seeds of theobroma cacao l. Food Chem 54:15–21CrossRefGoogle Scholar
  39. 39.
    Kim HK (1984) (-)-epicatechin content in fermented and unfermented cocoa beans. J Food Sci 49:1090–1092CrossRefGoogle Scholar
  40. 40.
    Payne MJ, Hurst WJ, Miller KB et al (2010) Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J Agric Food Chem 58:10518–10527PubMedCrossRefGoogle Scholar
  41. 41.
    Beckett ST (2008) The science of chocolate.Google Scholar
  42. 42.
    Thomson CD, Chisholm A, McLachlan SK et al (2007) Brazil nuts: An effective way to improve selenium status. Am J Clin Nutr 87:379–384Google Scholar
  43. 43.
    Jinap ST, Yap J et al (1994) Effect of drying on acidity and volatile fatty acits content of cocoa beans. J Sci Food Agric 65:67–75CrossRefGoogle Scholar
  44. 44.
    Zak DL, Keeney PG (1976) Changes in cocoa proteins during ripening of fruit, fermentation, and further processing of cocoa beans. J Agric Food Chem 24:483–486PubMedCrossRefGoogle Scholar
  45. 45.
    Hurst WJ, Payne MJ, Miller KB et al (2009) Stability of cocoa antioxidants and flavan-3-ols over time. J Agric Food Chem 20:9547–9550CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Herwig Bernaert
    • 1
  • Ieme Blondeel
  • Leen Allegaert
  • Tobias Lohmueller
  1. 1.Innovation, Barry Callebaut NVLebbeke-WiezeBelgium

Personalised recommendations