Skip to main content

Genetic Data in Forensic Science: Use, Misuse and Abuse

  • Conference paper
  • 1097 Accesses

Abstract

The diffusion of databases storing genetic information and health records for many citizens is clearly beneficial both for health care and for research, but is raising problems related with the possibility of misuse and abuse of these data. In this paper, we discuss the potential and limitations of DNA-based methods of forensic interest, starting from genetic profiling. We then move on to three related areas, and show that research so far has helped us understand the genetic bases of the probability to develop diseases, but has not identified genes that might (a) predispose to aggressive behavior, (b) allow racial categorization, and (c) make the person who carries them unsuitable for certain jobs or for raising step children. However, science is often misunderstood as producing certainties, and so sensitive biological information must be protected to avoid potentially serious violations of individual rights.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn S. M., Kim T. H., Lee S., Kim D., Ghang H., et al.: The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group, Genome Res, 2009, 19(9): 1622–1629.

    Article  Google Scholar 

  2. Auton A., Bryc K., Boyko A. R., Lohmueller K. E., Novembre J., et al.: Global distribution of genomic diversity underscores rich complex history of continental human populations, Genome Res, 2009, 19(5): 795–803.

    Article  Google Scholar 

  3. Barbujani G., Colonna V.: Human genome diversity: frequently asked questions, Trends Genet, 2010, 26 (7): 285–295.

    Article  Google Scholar 

  4. Barbujani G.: Human races: Classifying people vs understanding diversity, Current Genomics, 2005, (6): 215–226.

    Article  Google Scholar 

  5. Barbujani G., Magagni A., Minch E., Cavalli-Sforza L.L.: An apportionment of human DNA diversity, Proc Natl Acad Sci U S A, 1997, 94 (9): 4516–4519.

    Article  Google Scholar 

  6. Bodmer W., Bonilla C.: Common and rare variants in multifactorial susceptibility to common diseases, Nat Genet, 2008, 40 (6): 695–701.

    Article  Google Scholar 

  7. Brunner H.G., Nelen M., Breakefield X.O., Ropers H.H., van Oost B.A., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A, Science, 1993, 262 (5133): 578–580.

    Article  Google Scholar 

  8. Chimpanzee Sequencing and Analysis Consortium: “Initial sequence of the chimpanzee genome and comparison with the human genome”, Nature, 2005, 437 (7055): 69–87.

    Article  Google Scholar 

  9. Genomes Project Consortium, Durbin R.M., Abecasis G.R., Altshuler D.L., Auton A., Brooks L.D.: A map of human genome variation from populationscale sequencing, Nature, 2010, 467 (7319): 1061–1073.

    Article  Google Scholar 

  10. International Human Genome Sequency Consortium, Finishing the euchromatic sequence of the human genome, Nature, 2004, 431 (7011): 931–945.

    Article  Google Scholar 

  11. Craig I.W.: The importance of stress and genetic variation in human aggression, Bioessays, 2007, 29 (3): 227–236.

    Article  Google Scholar 

  12. Craig I.W., Halton K.E.: Genetics of human aggressive behaviour, Hum Genet, 2009, 126 (1): 101–113.

    Article  Google Scholar 

  13. Davis C. T. :Forensic genetics, Encyclopedia of Life Sciences. John Wiley & Sons

    Google Scholar 

  14. Davidson R.J., Putnam K.M., Larson C.L.: Dysfunction in the neural circuitry of emotion regulation. A possible prelude to violence, Science, 2000, 289 (5479): 591–594.

    Article  Google Scholar 

  15. Eastman N., Campbell C.: Neuroscience and legal determination of criminal responsibility, Nat Rev Neurosci, 2006, 7 (4): 311–318.

    Article  Google Scholar 

  16. Excoffier L.: Human demographic history: refining the recent African origin model, Curr Opin Genet Dev, 2002, 12, (6): 675–682.

    Article  Google Scholar 

  17. Feresin E.: Lighter sentence for murderer with ‘bad genes’, Nature News (30 October 2009) doi:10.1038/news.2009.1050.

    Google Scholar 

  18. Goldstein D.B.: Common genetic variation and human traits, N Engl J Med, 2009, 360 (17): 1696–1698.

    Article  Google Scholar 

  19. Gurvits I.G., Koenigsberg HW., Siever L.J.: Neurotransmitter dysfunction in patients with borderline personality disorder, Psychiatr Clin North Am, 2000, 23(1): 27–40, vi.

    Article  Google Scholar 

  20. Hahn M.W., Demuth J.P., Han S.G.: Accelerated rate of gene gain and loss in primates, Genetics, 2007, 177 (3): 1941–1949.

    Article  Google Scholar 

  21. Hammond H.A., Jin L., Zhong Y., Caskey C.T., Chakraborty R.: Evaluation of 13 short tandem repeat loci for use in personal identification applications, Am J Hum Genet, 1994, 55 (1): 175–189.

    Google Scholar 

  22. Hodgson J.A., Disotell T.R.: No evidence of a Neanderthal contribution to modern human diversity, Genome Biol, 2008, 9 (2): 206.

    Article  Google Scholar 

  23. Hunley K.L., Healy M.E., Long J.C.: The global pattern of gene identity variation reveals a history of long-range migrations, bottlenecks, and local mate exchange: implications for biological race, Am J Phys Anthropol, 2009, 139 (1): 35–46.

    Article  Google Scholar 

  24. Jakobsson M., Scholz S.W., Scheet P., Gibbs J. R., VanLiere J. M., et al.: Genotype, haplotype and copy-number variation in worldwide human populations, Nature, 2008, 451(7181): 998#x2013;1003.

    Article  Google Scholar 

  25. Jeffreys A.J., Wilson V., Thein S.L.: Individual-specific ‘fingerprints’ of human DNA, Nature, 1985, 316 (6023): 76–79.

    Article  Google Scholar 

  26. Kaessmann H.,Wiebe V.,Weiss G., Paabo S.: Great ape DNA sequences reveal a reduced diversity and an expansion in humans, Nat Genet, 2001, 27 (2): 155–156.

    Article  Google Scholar 

  27. Lea R., Chambers G.: Monoamine oxidase, addiction, and the “warrior” gene hypothesis, N Z Med J, 2007, 120 (1250): U2441.

    Google Scholar 

  28. Lewis R.: Iceland’s public supports database, but scientists object, The Scientist, 1999, July 19, 15: 1.

    Google Scholar 

  29. Lewontin R.C.: RC, The apportionment of human diversity, Evolutionary Biology, 1972, (6):381–398.

    Article  Google Scholar 

  30. Li J. Z., Absher D. M., Tang H., Southwick A. M., Casto A. M., et al., Worldwide human relationships inferred from genome-wide patterns of variation, Science, 2008, 319(5866): 1100–1104.

    Article  Google Scholar 

  31. Liu H., Prugnolle F., Manica A., Balloux F.: A geographically explicit genetic model of worldwide human-settlement history, Am J Hum Genet, 2006, 79 (2): 230–237.

    Article  Google Scholar 

  32. Marchini J., Cardon L.R., Phillips M.S., Donnelly P.: The effects of human population structure on large genetic association studies, Nat Genet, 2004, 36 (5): 512–517.

    Article  Google Scholar 

  33. Peterson C.L., Laniel M.A.: Histones and histone modifications, Curr Biol, 2004, 14 (14): R546–551.

    Article  Google Scholar 

  34. Piggins H.D.: Schizophrenia: Zooming in on a gene, Nature, 2011, 471 (7339): 455–456.

    Article  Google Scholar 

  35. Ramachandran S., Deshpande O., Roseman C. C., Rosenberg N. A., Feldman M. W., et al.: Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa, Proc Natl Acad Sci U S A, 2005, 102(44): 15942–15947.

    Article  Google Scholar 

  36. Schuster S. C., Miller W. , Ratan A. , Tomsho L. P. , Giardine B., et al.: Complete Khoisan and Bantu genomes from southern Africa, Nature, 2010, 463(7283): 943–947.

    Article  Google Scholar 

  37. Stone A.C., Griffiths R.C., Zegura S.L., Hammer M.F.: High levels of Y-chromosome nucleotide diversity in the genus Pan, Proc Natl Acad Sci U S A, 2002, 99 (1): 43–48.

    Article  Google Scholar 

  38. Tinbergen N.: On aims and methods of ethology, Zeitschrift für Tierpsychologie, 1963, (20): 410–433.

    Google Scholar 

  39. Vacic V. , McCarthy S., Malhotra D., Murray F., Chou H. H., et al.: Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia, Nature, 2011, 471(7339): 499–503.

    Article  Google Scholar 

  40. Weedon M.N., Frayling T.M.: Reaching new heights: insights into the genetics of human stature, Trends Genet, 2008, 24 (12): 595–603.

    Article  Google Scholar 

  41. Wheeler D. A., Srinivasan M. , Egholm M., Shen Y., Chen L., et al.: The complete genome of an individual by massively Parallel DNA sequencing, Nature, 2008, 452(7189): 872–876.

    Article  Google Scholar 

  42. Whittall H.: The forensic use of DNA: Scientific success story, ethical minefield, Biotechnol J, 2008, 3 (3): 303–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Barbujani, G., Tassi, F. (2012). Genetic Data in Forensic Science: Use, Misuse and Abuse. In: Bin, R., Lorenzon, S., Lucchi, N. (eds) Biotech Innovations and Fundamental Rights. Springer, Milano. https://doi.org/10.1007/978-88-470-2032-0_19

Download citation

Publish with us

Policies and ethics