Skip to main content

L’acidosi ipercapnica nella ventilazione artificiale protettiva: compromesso tollerato o ulteriore fattore di protezione?

  • Chapter
  • 366 Accesses

Riassunto

Come acutamente faceva notare Laffey dieci anni fa [1], siamo tutti abituati a considerare utili per i pazienti critici i range di normalità comunemente accettati per i sani, ma questo tipo di strategia non è certamente fondato sulla realtà dei fatti. Per esempio, somministrando ai neonati prematuri O2 per raggiungere valori “normali” di PaO2 abbiamo contribuito alla produzione delle retinopatie e delle displasie broncopolmonari; trasfondendo i pazienti critici sino a raggiungere valori normali di Htc abbiamo aumentato la mortalità; avendo come obiettivo i valori pressori normali nei politraumatizzati abbiamo ridotto la loro possibilità di sopravvivenza. Non possiamo quindi aprioristicamente escludere che, tenendo la PaCO2 a valori elevati nei pazienti critici (o addirittura tenendola a valori più bassi del normale), si faccia un danno.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Laffey GJ, Kavanagh BP (1999) Carbon dioxide and the critically ill-too little of a good thing? Lancet 354:1283–1286

    Article  PubMed  CAS  Google Scholar 

  2. Garland JS, Buck RK, Allred EN et al (1995) Hypocarbia before surfactant therapy appears to increase brochopulmonary dysplasia risk in infants with respiratory distress syndrome. Arch Ped Adolesc Med 149:617–622

    Article  CAS  Google Scholar 

  3. Cutillo A, Omboni E, Parondi R et al. (1974) Effects of hypocapnia on pulmonary mechanics in normal subjects and in patients with COPD. Am Rev Resp Dis 110:25–33

    PubMed  CAS  Google Scholar 

  4. Raynolds AM, Zadow SP, Sciochitano R et al (1992) Hypocapnia increases microvascular leakage in the guinee pig trachea. Am Rev Resp Dis 145:80–84

    Article  Google Scholar 

  5. Oyarzun MJ, Donoso P, Quijade D (1986) Role of hypocapnia in the alveolar surfactant increase induced by free fatty acid intravenous infusion in the rabbit. Respiration 49:187–194

    Article  PubMed  CAS  Google Scholar 

  6. Mulzelaar JP, Marmarou A, Word JD et al (1991) Adverse effects of prolunged hyperventilation in patients with severe head injury: a randomized trial. J Neurosurg. 75:731–739

    Article  Google Scholar 

  7. Vannucci RF, Towfligh J, Heitjan DF et al (1995) Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874

    PubMed  CAS  Google Scholar 

  8. Laffey JG, Honan D, Hopkins N et al (2004) Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Resp Crit Care Me 169:46–56

    Article  Google Scholar 

  9. Laffey JG, Engelberts D, Kavanagh B (2000) Buffering hypercapnic acidosis worsens ALI. Am J Resp Crit Care Med 161:141–146

    Article  PubMed  CAS  Google Scholar 

  10. Viles PH, Shepard JT (1968) Evidence for a dilator action of carbon dioxide on the pulmonary vessels of the cat. Circ Resp 22:325–332

    Article  CAS  Google Scholar 

  11. Price HL (1960) Effects of carbon dioxide on the cariovascular system. Anesthesiology 21:652–653

    Article  PubMed  CAS  Google Scholar 

  12. Cullen DJ, Enger EI (1974) Cardiovascular effects of carbon dioxide in man. Anesthesiology 41:345–349

    Article  PubMed  CAS  Google Scholar 

  13. Williams FM (1955) Individual effects of CO2, bicarbonate and pH on the electrical and mechanical activity of isolated rabbit auricles. J.Physiol 129:90–110

    Google Scholar 

  14. Cross BA, Silver IA (1962) Central activation of sympathadrenal system by hypoxia and hypercarbia. J. Andocrinol 24:91–93

    Article  CAS  Google Scholar 

  15. Downing SE, Siegal JH (1963) Baroceptor and chemoreceptor influences on sympathetic discharge to the heart. Am J Physiol 204:471–479

    Google Scholar 

  16. Ebata T, Watanabe Y, Amaha K et al (1991) Hemodynamic changes during the apnoea test for diagnosis of brain death. Can J Anaesth 33:436–440

    Google Scholar 

  17. Kimura K (1978) Experimental studies on cerebro-spinal anesthesia. Masni 27:1059–1070

    CAS  Google Scholar 

  18. Ridge KM, Olivera WG, Soldias F et al (2003) Alveolar type 1 cells express the α2 Na/KATPase, which contribute to lung liquid clearance. Circ Res 92:453–460

    Article  PubMed  CAS  Google Scholar 

  19. Matthay MA, Folkesson HG, Clerici C (2002) Lung epithelial fluid transport and resolution of pulmonary edema. Physiol Rev 82:569–600

    PubMed  CAS  Google Scholar 

  20. Fu Z, Costello ML, Tsukimoto H et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133

    PubMed  CAS  Google Scholar 

  21. Carlton DP, Cummings JJ, Scheerer RG et al (1990). Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69:577–583

    PubMed  CAS  Google Scholar 

  22. Parker JC, Hernandez LA, Longenecker GL et al (1990) Lung edema caused by high peak inspiratory pressure in dogs: role of increased microvascular filtration pressure and permeability. Am Rev Resp Dis 142:321–328

    Article  PubMed  CAS  Google Scholar 

  23. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema followed mechanical ventilation. Am Rev Resp Dis 148:1194–1203

    Article  PubMed  CAS  Google Scholar 

  24. Doerr CH, Gaijc O, Berrios JC et al (2005) Hypercapnic acidosis impairs plasma membrane wound realizing in ventilation-injured lungs. Am J Resp Crit Care Med 171:1371–1377

    Article  PubMed  Google Scholar 

  25. Joseph D, Dimiri O, Zhang XL et al (2002) Alveolar epithelial ion and fluid transport: polarity of alveolarepithelial cell acid-base permeability. Am J Physiol Lung Cell Med Physiol 282:L675–L683

    CAS  Google Scholar 

  26. Nishikawa T (1993) Acute haemodynamic effect of sodium bicarbonate in canine respiratory or metabolic acidosis. Br J Anaesth 70:196–200

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka M, Nishikawa T (1997) Acute haemodynamic effect of sodium bicarbonate administration in respiratory and metabolic acidosis in anesthetized dogs. Anaesth Int Care 25:615–620

    CAS  Google Scholar 

  28. McNicholas WT, Bonsignore MR (2007) Sleep apnea as an independent risk factor for cardiovascular disease: current evidence, basic mechanism, and research priorities. Eur Resp J 29:156–178

    Article  CAS  Google Scholar 

  29. Sin DD, Man SF (2005) Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Ther Soc 2:8–11

    Article  Google Scholar 

  30. Chen J, Secuona E, Briva A et al (2008) Carbonic antydrase II and alveolar fluid absorption during hypercapnia. Am J Resp Cell Med Biol 38:32–37

    Article  CAS  Google Scholar 

  31. The Acute Respiratory Distress Syndrome Network (2003) Ventilation with lower tidal volume as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Eng J Med 342:1301–1308

    Google Scholar 

  32. CArdenas V, Zwischenberger J, Tao W (1996) Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 24:827–834

    Article  PubMed  Google Scholar 

  33. Taylor DE, Gutierrez G (1996) Tonometry: a review of clinical studies. Crit Care Med 12:1007–1018

    CAS  Google Scholar 

  34. Van Der Linden P, Rousiu I, Deltell A et al (1995) Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrage. Anesth Analg 80:269–275

    PubMed  Google Scholar 

  35. Vallet B, Teboul JL, Coin S et al (2000) Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  CAS  Google Scholar 

  36. Schlichtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451

    PubMed  CAS  Google Scholar 

  37. Neviere R, Chagnon JL, Teboul JL et al (2002) Small intestine intramucosal PCO2 and microvascular blood during hypoxic and ischemic hypoxia. Crit Care Med 30:379–384

    Article  PubMed  Google Scholar 

  38. Dubin A, Murias G, Esterissoro E et al (2003) Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care Med 6:514–520

    Google Scholar 

  39. Gutierrez G (2004) A mathematical Model of tissue-blood CO2 exchange during hypoxia. Am J Resp Crit Care Med 169:525–530

    Article  PubMed  Google Scholar 

  40. Nuckton TJ, Alonsoj A, Kellet RH et al (2002) Pulmonary dead-space fraction as a risk factor for death in ARDS. NJM 346:1281–1286

    Article  Google Scholar 

  41. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe ARDS. Int Care Med 16:372–377

    Article  CAS  Google Scholar 

  42. Amato MBP, Barbas CSV, Medeiros DP et al (1995) Beneficial effects of the open lung approach with low distending pressure in ARDS: a prospective randomized study on mechanical ventilation. Am J Resp Crit Care Med 152:1835–1846

    Article  PubMed  CAS  Google Scholar 

  43. Carvalho CBR, Barbas CSV, Medeiros DM et al (1997) Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP. Am J Resp Crit Care Med 156:1458–1466

    Article  PubMed  CAS  Google Scholar 

  44. Carvalho CBR, Barbas CSV, Medeiros DM et al (1998) Effect of protective-ventilation strategy on mortality in the ARDS. N Engl J Med 338:347–354

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Allaria, B. (2011). L’acidosi ipercapnica nella ventilazione artificiale protettiva: compromesso tollerato o ulteriore fattore di protezione?. In: Allaria, B. (eds) Excerpta Anestesiologica. Springer, Milano. https://doi.org/10.1007/978-88-470-2023-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2023-8_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2022-1

  • Online ISBN: 978-88-470-2023-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics