Advertisement

Ventilatory Strategies in Acute Lung Injury

  • E. Calderini
  • S. Sher
  • E. Allegritti
Conference paper

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating disorders characterised by pulmonary inflammation leading to hypoxaemia and respiratory failure and are some of the most important causes of admission to the paediatric intensive care unit (PICU) [1, 2]. The American European Consensus Conference (AECC) criteria define ALI and ARDS in adults and children using four clinical parameters [3]:

Keywords

Acute Lung Injury Acute Respiratory Distress Syndrome Paediatric Intensive Care Unit Acute Respiratory Failure Noninvasive Positive Pressure Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Randolph G (2009) Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 37:2448–2454PubMedCrossRefGoogle Scholar
  2. 2.
    Nichols DG (2008) Roger’s textbook of pediatric intensive care. Lippincott Williams & Wilkins, USAGoogle Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL et al (1994) The American–European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  4. 4.
    Timmons OD, Havens PL, Fackler JC (1995) Predicting death in pediatric patients with acute respiratory failure. Pediatric Critical Care Study Group. Extracorporeal Life Support Organization. Chest 108:789–779Google Scholar
  5. 5.
    Erickson S, Schibler A, Numa A et al (2007) Acute lung injury in pediatric intensive care in Australia and New Zealand: A prospective, multicenter, observational study Pediatr Crit Care Med 8:317–323PubMedCrossRefGoogle Scholar
  6. 6.
    Dahlem P, van Alderen WMC, Bos AP (2007) Pediatric acute lung injury. Paediatr Respir Rev 8:348–362PubMedCrossRefGoogle Scholar
  7. 7.
    Pittet JF, Mackersie RC, Martin TR et al (1997) Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 155:1187–1205PubMedGoogle Scholar
  8. 8.
    Marshall RP, Bellingan G, Webb S et al (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788PubMedGoogle Scholar
  9. 9.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  10. 10.
    Kavanagh BP, Laffey JG (2006) Hypercapnia permissive and therapeutic. Minerva Anestesiol 72:567–576PubMedGoogle Scholar
  11. 11.
    Flori HR, Glidden DV, Rutherford GW et al (2005) Pediatric acute lung injury prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med 171:995–1001PubMedCrossRefGoogle Scholar
  12. 12.
    International Consensus Conference in Intensive Care Medicine (1999) Ventilatorassociated lung injury in ARDS. Am J Respir Crit Care Med 160:2118–2124Google Scholar
  13. 13.
    Slutsky AS (2005) Ventilator-induced lung injury: from barotrauma to biotrauma. Respir Care 50:646–659PubMedGoogle Scholar
  14. 14.
    Trembley LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33CrossRefGoogle Scholar
  15. 15.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  16. 16.
    West JB, Tsukimoto K, Mathieu-Costello O et al (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742PubMedGoogle Scholar
  17. 17.
    Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  18. 18.
    Ranieri VM, Giunta F, Suter PM et al (2000) Mechanical ventilation as a mediator of multi system organ failure in acute respiratory distress syndrome. JAMA 284:43–44PubMedCrossRefGoogle Scholar
  19. 19.
    Uhlig S, Ranieri M, Slutsky AS (2004) Biotrauma hypothesis of ventilator-induced lung injury. Am J Respir Crit Care Med 169:314–315PubMedGoogle Scholar
  20. 20.
    Plotz FB, Slutsky AS et al (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypothesis. Intensive Care Med 30:1865–1872PubMedCrossRefGoogle Scholar
  21. 21.
    Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116:9 s–15 sPubMedCrossRefGoogle Scholar
  22. 22.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321PubMedCrossRefGoogle Scholar
  23. 23.
    Haitsma JJ, Lachmann B (2006) Lung protective ventilation in ARDS: the open lung maneuver. Minerva Anestesiol 72:117–132PubMedGoogle Scholar
  24. 24.
    Haitsma JJ, Uhlig S, Goggel R et al (2000) Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 26:1515–1522PubMedCrossRefGoogle Scholar
  25. 25.
    Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 352:327–336Google Scholar
  26. 26.
    deDurante G, del Turco M, Rustichini L et al (2002) ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:1271–1274CrossRefGoogle Scholar
  27. 27.
    Rimensberger PC, Pache JC, Mc Kerlie C et al (2000) Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and preventing lung injury during both conventional mechanical ventilation and high-frequency oscillation. Intensive Care Med 26:745–755PubMedCrossRefGoogle Scholar
  28. 28.
    ARDS Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  29. 29.
    Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  30. 30.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786PubMedCrossRefGoogle Scholar
  31. 31.
    Gattinoni L, Pesenti A (2005) The concept of ‘baby lung’. Intensive Care Med 31:776–784PubMedCrossRefGoogle Scholar
  32. 32.
    L’Her E, Renault A, Oger E et al (2002) A prospective survey of early 12-h prone positioning effects in patients with the acute respiratory distress syndrome. Intensive Care Med 28:570–575PubMedCrossRefGoogle Scholar
  33. 33.
    Jolliet P, Bulpa P, Chevrolet JC (1998) Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med 26:1977–1985PubMedCrossRefGoogle Scholar
  34. 34.
    Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573PubMedCrossRefGoogle Scholar
  35. 35.
    Fan E, Mehta S (2005) High-frequency oscillatory ventilation and adjunctive therapies: inhaled nitric oxide and prone positioning. Crit Care Med 33:S182–S187PubMedCrossRefGoogle Scholar
  36. 36.
    Numa AH, Hammer J, Newth CJ (1997) Effect of prone and supine positions on functional residual capacity, oxygenation, and respiratory mechanics in ventilated infants and children. Am J Respir Crit Care Med 156:1185–1189PubMedGoogle Scholar
  37. 37.
    Haefner SM, Bratton SL, Annich GM et al (2003) Complications of intermittent prone positioning in pediatric patients receiving extracorporeal membrane oxygenation for respiratory failure. Chest 123:1589–1594PubMedCrossRefGoogle Scholar
  38. 38.
    Kavanagh BP (2005) Prone positioning in children with ARDS: positive reflections on a negative clinical trial. JAMA 294:248–250PubMedCrossRefGoogle Scholar
  39. 39.
    Curley MA, Hibberd PL, Fineman LD et al (2005) Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 294:229–237PubMedCrossRefGoogle Scholar
  40. 40.
    Relvas MS, Silver PC, Sagy M (2003) Prone positioning of pediatric patients with ARDS results in improvement in oxygenation if maintained >12 h daily. Chest 124:269–274PubMedCrossRefGoogle Scholar
  41. 41.
    Casado-Flores J, Martinez DA, Ruiz-Lopez MJ et al (2002) Pediatric ARDS: effect of supine-prone postural changes on oxygenation. Intensive Care Med 28:1792–1796PubMedCrossRefGoogle Scholar
  42. 42.
    Curley MA, Arnold JH, Thompson JE et al (2006) Clinical trial design–effect of prone positioning on clinical outcomes in infants and children with acute respiratory distress syndrome. J Crit Care 21:23–32PubMedCrossRefGoogle Scholar
  43. 43.
    Curley MA, Thompson JE, Arnold JH (2000) The effects of early and repeated prone positioning in pediatric patients with acute lung injury. Chest 118:156–163PubMedCrossRefGoogle Scholar
  44. 44.
    Kornecki A, Frndova H, Coates AL et al (2001) A randomized trial of prolonged prone positioning in children with acute respiratory failure. Chest 119:211–218PubMedCrossRefGoogle Scholar
  45. 45.
    Murdoch IA, Storman MO (1994) Improved arterial oxygenation in children with the adult respiratory distress syndrome: the prone position. Acta Paediatr 83:1043–1046PubMedCrossRefGoogle Scholar
  46. 46.
    Wells DA, Gillies D, Fitzgerald DA (2005) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev CD003645Google Scholar
  47. 47.
    Valenza F, Guglielmi M, Maffioletti M et al (2005) Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med 33:361–367PubMedCrossRefGoogle Scholar
  48. 48.
    Broccard A, Shapiro RS, Schmitz LL et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303PubMedCrossRefGoogle Scholar
  49. 49.
    Broccard AF, Shapiro RS, Schmitz LL et al (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25:16–27PubMedCrossRefGoogle Scholar
  50. 50.
    Vieillard-Baron A, Rabiller A et al (2005) Prone position improves mechanics and alveolar ventilation in acute respiratory distress syndrome. Intensive Care Med 31:220–226PubMedCrossRefGoogle Scholar
  51. 51.
    Essouri S, Durand P, Chevret L et al (2008) Physiological effects of noninvasive positive ventilation during acute moderate hypercapnic respiratory insufficiency in children. Intensive Care Med 34:2248–2255PubMedCrossRefGoogle Scholar
  52. 52.
    Stucky P, Perez MH, Scalfaro P et al (2009) Feasibility of non-invasive pressure support ventilation in infants with respiratory failure after extubation: a pilot study. Intensive Care Med 35:1623–1627CrossRefGoogle Scholar
  53. 53.
    Mayordomo-Colunga J, Medina A, Corsino R et al (2009) Predictive factors of non-invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med 35:527–536PubMedCrossRefGoogle Scholar
  54. 54.
    Essouri S, Chevret L, Durand P et al (2006) Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 7:329–334PubMedCrossRefGoogle Scholar
  55. 55.
    Bernet V, Hug MI, Frey B (2005) Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med 6:660–664PubMedCrossRefGoogle Scholar
  56. 56.
    Thille AW, Lyazidi A, Richard JC et al (2009) A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 35:1368–1376PubMedCrossRefGoogle Scholar
  57. 57.
    Nava S, Hill N (2009) Non-invasive ventilation in acute respiratory failure. Lancet 374(9685):250–259PubMedCrossRefGoogle Scholar
  58. 58.
    Vignaux L, Vargas F, Roeseler J et al (2009) Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med 35:840–846PubMedCrossRefGoogle Scholar
  59. 59.
    Codazzi D, Nacoti M, Passoni M et al (2006) Continuous positive airway pressure with modified helmet for treatment of hypoxemic acute respiratory failure in infants and a preschool population: A feasibility study. Pediatr Crit Care Med 7:455–460PubMedCrossRefGoogle Scholar
  60. 60.
    Chidini G, Calderini E, Pelosi P (2010) Treatment of acute hypoxemic respiratory failure with continuous positive airway pressure delivered by a new pediatric helmet in comparison with a standard full face mask: a prospective pilot study. Pediatr Crit Care Med 11:1–7CrossRefGoogle Scholar
  61. 61.
    Milési C, Ferragu F, Jaber S et al (2010) Continuous positive airway pressure ventilation with helmet in infants under 1 year. Intensive Care Med 36(9):1592–1596PubMedCrossRefGoogle Scholar
  62. 62.
    Thia LP, McKenzie SA, Blyth TP et al (2008) Randomized controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93:45–47PubMedCrossRefGoogle Scholar
  63. 63.
    Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2006) Nasal continuous positive airway pressure with heliox in infants with acute bronchiolitis. Respir Med 100:1458–1462PubMedCrossRefGoogle Scholar
  64. 64.
    Cambonie G, Milesi C, Fournier-Favre S et al (2006) Clinical effects of heliox administration for acute bronchiolitis in young infants. Chest 129:676–682PubMedCrossRefGoogle Scholar
  65. 65.
    Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2008) Nasal continuous positive airway pressure with heliox versus air oxygen in infants with acute bronchiolitis: a crossover study. Pediatrics 121:1190–1195CrossRefGoogle Scholar
  66. 66.
    Shah PS, Ohlsson A, Shah JP (2008) Continuous negative extrathoracic pressure or continuous positive airway pressure for acute hypoxemic respiratory failure in children. Cochrane Database Syst Rev 1:CD003699Google Scholar
  67. 67.
    Javouhey E, Barats A, Richard N et al (2008) Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med 34:1608–1614PubMedCrossRefGoogle Scholar
  68. 68.
    Yanez LJ, Yunge M, Emilfork M et al (2008) A prospective, randomized, controlled trial of non-invasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 9:484–489PubMedCrossRefGoogle Scholar
  69. 69.
    Pancera CF, Hayashi M, Fregnani JH et al (2008) Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. Pediatr Hematol Oncol 30:533–538CrossRefGoogle Scholar
  70. 70.
    Piastra M, De Luca D, Pietrini D et al (2009) Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 35:1420–1427PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • E. Calderini
  • S. Sher
  • E. Allegritti

There are no affiliations available

Personalised recommendations