Respiratory Mechanics: Principles, Utility and Advances

  • A. R. Carvalho
  • W. A. Zin
Conference paper


Pulmonary gas exchange requires a continuous flow of fresh gas and blood through the alveoli and alveolar capillaries. Air flows from a region of higher pressure to one of lower pressure. At end expiration, the alveolar pressure is equal to atmospheric pressure, and during inspiration, the alveolar pressure must be less than atmospheric pressure. As the movements of the lungs are entirely passive, forces must be applied in order to expand the lungs, and as a consequence, alveolar pressure is decreased from its resting pressure at the end of expiration. In the case of spontaneous breathing, the respiratory muscles provide the external forces, whereas artificial ventilation moves the relaxed respiratory system [1]. During inspiration, the external forces must overcome the impedance of the lung and chest wall, the two components of the respiratory system. This impedance stems mainly from the force to overcome elastic recoil, the frictional resistance during the movement of the tissues of the lungs and thorax, and the force to overcome the frictional resistance to airflow through the tracheobronchial tree. The inertial component of gas and tissue is usually negligible during conventional ventilation [2].


Chest Wall Acute Lung Injury Respiratory System Lung Volume Airway Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Macklem PT (1998) The mechanics of breathing. Am J Respir Crit Care Med 157:S88–S94PubMedGoogle Scholar
  2. 2.
    Rodarte JR, Rehder K (1986) Dynamics of respiration. In: Macklem PT, Mead J (eds) Handbook of physiology, Sect. 3. The respiratory system, Vol. III. American Physiological Society, Bethesda, pp 131–144Google Scholar
  3. 3.
    Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330PubMedGoogle Scholar
  4. 4.
    Fenn WO, Rahn H (eds) (1964) Handbook of physiology, Sect. 3. Respiration, Vol. 1. American Physiological Society, Washington, DC, pp 357–476Google Scholar
  5. 5.
    Campbell EJM, Agostoni E, Davis JN (1970) The respiratory muscles: mechanics and neural control. Lloyd-Luke, LondonGoogle Scholar
  6. 6.
    Hoppin FG Jr, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Marcel Dekker, New York, pp 83–162Google Scholar
  7. 7.
    McFadded ER Jr, Ingram RH Jr (1980) Clinical application and interpretation of airway physiology. Marcel Dekker, New York, pp 297–324Google Scholar
  8. 8.
    Macklem PT, Mead J (1986) Handbook of physiology, Sect. 3. The respiratory system, Vol. III. American Physiological Society, Bethesda, pp 113–461Google Scholar
  9. 9.
    Milic-Emili J (1999) Respiratory mechanics. European Respiratory Society, LeedsGoogle Scholar
  10. 10.
    Milic-Emili J, Lucangelo U, Pesenti A, Zin WA (1999) Basics of respiratory mechanics and artificial ventilation. Springer, MilanGoogle Scholar
  11. 11.
    Hamid Q, Shannon J, Martin J (2005) Physiologic basis of respiratory disease. BC Dekker, Hamilton, pp 15–131Google Scholar
  12. 12.
    Murray JF (1986) The normal lung. Saunders, PhiladelphiaGoogle Scholar
  13. 13.
    Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791PubMedGoogle Scholar
  14. 14.
    Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211PubMedGoogle Scholar
  15. 15.
    Zin WA, Milic-Emili J (2005) Esophageal pressure measurement. In: Tobin MJ (ed) Principles and practice of intensive care monitoring. McGraw, New York, pp 545–552Google Scholar
  16. 16.
    von Neergaard K (1929) Neue Auffassungen über einen Grundbergriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66:373–394CrossRefGoogle Scholar
  17. 17.
    Pattle RE (1955) Properties, function and origin of the alveolar lining fluid. Nature 175:1125–1126PubMedCrossRefGoogle Scholar
  18. 18.
    Brown ES, Johnson RP, Clemments JA (1959) Pulmonary surface tension. J Appl Physiol 14:717–720PubMedGoogle Scholar
  19. 19.
    Schurch S, Goerke J, Clemments JA (1976) Direct determination of surface tension in the lung. Prof Natl Acad Sci USA 73:4698–4708CrossRefGoogle Scholar
  20. 20.
    Comroe Jr JH (1974) Physiology of respiration. Year Book Medical Publishers, ChicagoGoogle Scholar
  21. 21.
    King RJ, Clemments JA (1985) Lipid synthesis and surfactant turnover in the lungs. In: Fishman AP, Fisher AB (eds) Handbook of physiology, Sect. 3, The respiratory system, Vol. I. American Physiological Society, Bethesda, pp 309–336Google Scholar
  22. 22.
    Aires MM (2008) Fisiologia. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  23. 23.
    Rahn H, Otis AB, Chadwick LE, Fenn O (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178PubMedGoogle Scholar
  24. 24.
    Rohrer F (1915) Der Strömungswiderstand der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken Pfluegers Arch 162:225–299Google Scholar
  25. 25.
    Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405PubMedCrossRefGoogle Scholar
  26. 26.
    Similowski T, Levy P, Corbeil C et al (1989) Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229PubMedGoogle Scholar
  27. 27.
    Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450PubMedGoogle Scholar
  28. 28.
    Auler JO Jr, Saldiva PH, Carvalho CR et al (1990) Flow and volume dependence of respiratory system mechanics during constant flow ventilation in normal subjects and in adult respiratory distress syndrome. Crit Care Med 18:1080–1086PubMedCrossRefGoogle Scholar
  29. 29.
    D’Angelo E, Robatto FM, Calderini E et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:2602–2610PubMedGoogle Scholar
  30. 30.
    Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Chest wall and respiratory system mechanics in cats: effects of flow and volume. J Appl Physiol 64:2636–2646PubMedGoogle Scholar
  31. 31.
    D’Angelo E, Prandi E, Tavola M et al (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77:883–887PubMedGoogle Scholar
  32. 32.
    Marini JJ (2010) Safer ventilation of the injured lung: one step closer. Crit Care 14:192PubMedCrossRefGoogle Scholar
  33. 33.
    Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedCrossRefGoogle Scholar
  34. 34.
    Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655PubMedCrossRefGoogle Scholar
  35. 35.
    Suter PM, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  36. 36.
    Carvalho AR, Jandre FC, Pino AV et al (2006) Effects of descending positive endexpiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets. Crit Care 10:R122PubMedCrossRefGoogle Scholar
  37. 37.
    Carvalho AR, Jandre FC, Pino AV et al (2007) Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care 11:R86PubMedCrossRefGoogle Scholar
  38. 38.
    Carvalho AR, Spieth PM, Pelosi P et al (2008) Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration. Int Care Med 34:2291–2299CrossRefGoogle Scholar
  39. 39.
    Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439PubMedGoogle Scholar
  40. 40.
    Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328PubMedCrossRefGoogle Scholar
  41. 41.
    Grasso S, Terragni P, Mascia L et al (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32:1018–1027PubMedCrossRefGoogle Scholar
  42. 42.
    Mergoni M, Martelli A, Volpi A et al (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 156:846–854PubMedGoogle Scholar
  43. 43.
    Terragni PP, Rosboch GL, Lisi A et al (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J 22:15S–21SCrossRefGoogle Scholar
  44. 44.
    LaPrad AS, Lutchen KR (2008) Respiratory impedance measurements for assessment of lung mechanics: focus on asthma. Respir Physiol Neurobiol 163:64–73PubMedCrossRefGoogle Scholar
  45. 45.
    Farre R, Mancini M, Rotger M et al (2001) Oscillatory resistance measured during noninvasive proportional assist ventilation. Am J Respir Crit Care Med 164:790–794PubMedGoogle Scholar
  46. 46.
    Hamakawa H, Sakai H, Takahashi A et al (2010) Forced oscillation technique as a non-invasive assessment for lung transplant recipients. Adv Exp Med Biol 662:293–298PubMedCrossRefGoogle Scholar
  47. 47.
    Bellardine Black CL, Hoffman AM, Tsai LW et al (2007) Relationship between dynamic respiratory mechanics and disease heterogeneity in sheep lavage injury. Crit Care Med 35:870–878PubMedCrossRefGoogle Scholar
  48. 48.
    Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • A. R. Carvalho
  • W. A. Zin

There are no affiliations available

Personalised recommendations