Skip to main content
  • 1209 Accesses

Abstract

Pulmonary gas exchange requires a continuous flow of fresh gas and blood through the alveoli and alveolar capillaries. Air flows from a region of higher pressure to one of lower pressure. At end expiration, the alveolar pressure is equal to atmospheric pressure, and during inspiration, the alveolar pressure must be less than atmospheric pressure. As the movements of the lungs are entirely passive, forces must be applied in order to expand the lungs, and as a consequence, alveolar pressure is decreased from its resting pressure at the end of expiration. In the case of spontaneous breathing, the respiratory muscles provide the external forces, whereas artificial ventilation moves the relaxed respiratory system [1]. During inspiration, the external forces must overcome the impedance of the lung and chest wall, the two components of the respiratory system. This impedance stems mainly from the force to overcome elastic recoil, the frictional resistance during the movement of the tissues of the lungs and thorax, and the force to overcome the frictional resistance to airflow through the tracheobronchial tree. The inertial component of gas and tissue is usually negligible during conventional ventilation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macklem PT (1998) The mechanics of breathing. Am J Respir Crit Care Med 157:S88–S94

    PubMed  CAS  Google Scholar 

  2. Rodarte JR, Rehder K (1986) Dynamics of respiration. In: Macklem PT, Mead J (eds) Handbook of physiology, Sect. 3. The respiratory system, Vol. III. American Physiological Society, Bethesda, pp 131–144

    Google Scholar 

  3. Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330

    PubMed  CAS  Google Scholar 

  4. Fenn WO, Rahn H (eds) (1964) Handbook of physiology, Sect. 3. Respiration, Vol. 1. American Physiological Society, Washington, DC, pp 357–476

    Google Scholar 

  5. Campbell EJM, Agostoni E, Davis JN (1970) The respiratory muscles: mechanics and neural control. Lloyd-Luke, London

    Google Scholar 

  6. Hoppin FG Jr, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (ed) Bioengineering aspects of the lung. Marcel Dekker, New York, pp 83–162

    Google Scholar 

  7. McFadded ER Jr, Ingram RH Jr (1980) Clinical application and interpretation of airway physiology. Marcel Dekker, New York, pp 297–324

    Google Scholar 

  8. Macklem PT, Mead J (1986) Handbook of physiology, Sect. 3. The respiratory system, Vol. III. American Physiological Society, Bethesda, pp 113–461

    Google Scholar 

  9. Milic-Emili J (1999) Respiratory mechanics. European Respiratory Society, Leeds

    Google Scholar 

  10. Milic-Emili J, Lucangelo U, Pesenti A, Zin WA (1999) Basics of respiratory mechanics and artificial ventilation. Springer, Milan

    Google Scholar 

  11. Hamid Q, Shannon J, Martin J (2005) Physiologic basis of respiratory disease. BC Dekker, Hamilton, pp 15–131

    Google Scholar 

  12. Murray JF (1986) The normal lung. Saunders, Philadelphia

    Google Scholar 

  13. Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    PubMed  CAS  Google Scholar 

  14. Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211

    PubMed  CAS  Google Scholar 

  15. Zin WA, Milic-Emili J (2005) Esophageal pressure measurement. In: Tobin MJ (ed) Principles and practice of intensive care monitoring. McGraw, New York, pp 545–552

    Google Scholar 

  16. von Neergaard K (1929) Neue Auffassungen über einen Grundbergriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66:373–394

    Article  Google Scholar 

  17. Pattle RE (1955) Properties, function and origin of the alveolar lining fluid. Nature 175:1125–1126

    Article  PubMed  CAS  Google Scholar 

  18. Brown ES, Johnson RP, Clemments JA (1959) Pulmonary surface tension. J Appl Physiol 14:717–720

    PubMed  CAS  Google Scholar 

  19. Schurch S, Goerke J, Clemments JA (1976) Direct determination of surface tension in the lung. Prof Natl Acad Sci USA 73:4698–4708

    Article  CAS  Google Scholar 

  20. Comroe Jr JH (1974) Physiology of respiration. Year Book Medical Publishers, Chicago

    Google Scholar 

  21. King RJ, Clemments JA (1985) Lipid synthesis and surfactant turnover in the lungs. In: Fishman AP, Fisher AB (eds) Handbook of physiology, Sect. 3, The respiratory system, Vol. I. American Physiological Society, Bethesda, pp 309–336

    Google Scholar 

  22. Aires MM (2008) Fisiologia. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  23. Rahn H, Otis AB, Chadwick LE, Fenn O (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178

    PubMed  CAS  Google Scholar 

  24. Rohrer F (1915) Der Strömungswiderstand der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken Pfluegers Arch 162:225–299

    Google Scholar 

  25. Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405

    Article  PubMed  CAS  Google Scholar 

  26. Similowski T, Levy P, Corbeil C et al (1989) Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229

    PubMed  CAS  Google Scholar 

  27. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  28. Auler JO Jr, Saldiva PH, Carvalho CR et al (1990) Flow and volume dependence of respiratory system mechanics during constant flow ventilation in normal subjects and in adult respiratory distress syndrome. Crit Care Med 18:1080–1086

    Article  PubMed  Google Scholar 

  29. D’Angelo E, Robatto FM, Calderini E et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70:2602–2610

    PubMed  Google Scholar 

  30. Kochi T, Okubo S, Zin WA, Milic-Emili J (1988) Chest wall and respiratory system mechanics in cats: effects of flow and volume. J Appl Physiol 64:2636–2646

    PubMed  CAS  Google Scholar 

  31. D’Angelo E, Prandi E, Tavola M et al (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77:883–887

    PubMed  Google Scholar 

  32. Marini JJ (2010) Safer ventilation of the injured lung: one step closer. Crit Care 14:192

    Article  PubMed  Google Scholar 

  33. Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645

    Article  PubMed  CAS  Google Scholar 

  34. Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655

    Article  PubMed  CAS  Google Scholar 

  35. Suter PM, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  36. Carvalho AR, Jandre FC, Pino AV et al (2006) Effects of descending positive endexpiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets. Crit Care 10:R122

    Article  PubMed  Google Scholar 

  37. Carvalho AR, Jandre FC, Pino AV et al (2007) Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care 11:R86

    Article  PubMed  Google Scholar 

  38. Carvalho AR, Spieth PM, Pelosi P et al (2008) Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration. Int Care Med 34:2291–2299

    Article  Google Scholar 

  39. Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439

    PubMed  CAS  Google Scholar 

  40. Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  PubMed  CAS  Google Scholar 

  41. Grasso S, Terragni P, Mascia L et al (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32:1018–1027

    Article  PubMed  Google Scholar 

  42. Mergoni M, Martelli A, Volpi A et al (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 156:846–854

    PubMed  CAS  Google Scholar 

  43. Terragni PP, Rosboch GL, Lisi A et al (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J 22:15S–21S

    Article  Google Scholar 

  44. LaPrad AS, Lutchen KR (2008) Respiratory impedance measurements for assessment of lung mechanics: focus on asthma. Respir Physiol Neurobiol 163:64–73

    Article  PubMed  Google Scholar 

  45. Farre R, Mancini M, Rotger M et al (2001) Oscillatory resistance measured during noninvasive proportional assist ventilation. Am J Respir Crit Care Med 164:790–794

    PubMed  CAS  Google Scholar 

  46. Hamakawa H, Sakai H, Takahashi A et al (2010) Forced oscillation technique as a non-invasive assessment for lung transplant recipients. Adv Exp Med Biol 662:293–298

    Article  PubMed  Google Scholar 

  47. Bellardine Black CL, Hoffman AM, Tsai LW et al (2007) Relationship between dynamic respiratory mechanics and disease heterogeneity in sheep lavage injury. Crit Care Med 35:870–878

    Article  PubMed  Google Scholar 

  48. Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this paper

Cite this paper

Carvalho, A.R., Zin, W.A. (2011). Respiratory Mechanics: Principles, Utility and Advances. In: Gullo, A. (eds) Anaesthesia, Pharmacology, Intensive Care and Emergency Medicine A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2014-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2014-6_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2013-9

  • Online ISBN: 978-88-470-2014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics