Clinical Assessment and Diagnostic Procedures in Neurotrauma

  • M. Zanello
  • M. Vincenzi
  • M. Bandini
Conference paper


Much has been learned over the past 20 years about traumatic brain injury (TBI). The surgical management of TBI has changed little during this period and continues to concentrate on early evacuation of significant space-occupying lesions. In contrast, there have been major changes in our approach to the critical care management of TBI during this period, and this is reflected in the progressive and significant reduction in severe TBI mortality from 50% to 10% over the last 30 years. This trend in reduced mortality and improved outcomes has, for the most part, been subsequent to the use of evidence-based critical care management protocols that emphasise assessment and monitoring [1].


Traumatic Brain Injury Cerebral Blood Flow Glasgow Coma Scale Cerebral Perfusion Pressure Severe Traumatic Brain Injury 


  1. 1.
    Menon DK (2009) Unique challenges in clinical trials in traumatic brain injury. Crit Care Med 37: S129–S135PubMedCrossRefGoogle Scholar
  2. 2.
    Tagliaferri F, Compagnone C, Korsic M et al (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir 148: 255–268CrossRefGoogle Scholar
  3. 3.
    Berg J, Tagliaferri F, Servadei F (2005) Cost of trauma in Europe. Eur J Neurol 12 (Suppl 1): 85–90PubMedCrossRefGoogle Scholar
  4. 4.
    Brain Trauma Foundation (2007) Guidelines for the management of severe traumatic brain injury (3rd edn). J Neurotrauma 24(1):S1–S106CrossRefGoogle Scholar
  5. 5.
    Murray GD, Butcher I, McHugh GS et al (2007) Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24: 329–337PubMedCrossRefGoogle Scholar
  6. 6.
    Steyerberg EW, Mushkudiani N, Perel P et al (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5 (8): e165PubMedCrossRefGoogle Scholar
  7. 7.
    Lingsma HF, Roozenbeek B, Steyerberg EW et al (2010) Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol 9(5):54–54CrossRefGoogle Scholar
  8. 8.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2: 81–84CrossRefGoogle Scholar
  9. 9.
    Zuercher M, Ummenhofer W, Baltussen A et al (2009) The use of Glasgow Coma Scale in injury assessment: a critical review. Brain Inj 23 (5): 371–384PubMedCrossRefGoogle Scholar
  10. 10.
    Marmarou A, Lu J, Butcher I et al (2007) Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: an IMPACT analysis. J Neurotrauma 24 (2): 270–280PubMedCrossRefGoogle Scholar
  11. 11.
    Stocchetti N, Pagan F, Calappi E et al (2004) Inaccurate early assessment of neurological severity in head injury. J Neurotrauma 21 (9): 1131–1140PubMedCrossRefGoogle Scholar
  12. 12.
    Balestreri M, Czosnyka M, Chatfield DA et al (2004) Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. J Neurol Neurosurg Psychiatry 75: 161–162PubMedGoogle Scholar
  13. 13.
    Marshall l, Marshall S, Klauber M et al (1991) New classification of head injury based on computerized tomography. J Neurosurg 75: S14–S20Google Scholar
  14. 14.
    Servadei F, Murray GD, Penny K et al (2000) The value of the “worst” computed tomographic scan in clinical studies of moderate and severe head injury. Neurosurgery 46: 70–77PubMedCrossRefGoogle Scholar
  15. 15.
    Association for the Advancement of Automotive Medicine (1990) The abbreviated injury scale, 1990 revision. Des Plaines, IL: Association for the Advancement of Automotive Medicine 15–24Google Scholar
  16. 16.
    Baker SP, O’Neill B, Haddon W Jr et al (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14: 187–196PubMedCrossRefGoogle Scholar
  17. 17.
    Champion HR, Sacco WJ, Carnazzo AJ et al (1981) Trauma score. Crit Care Med 9: 672–676CrossRefGoogle Scholar
  18. 18.
    Mascia L, Sakr Y, Pasero D et al (2008) Extracranial complications in patients with acute brain injury: A post-hoc analysis of the SOAP study. Intensive Care Med 34: 720–727PubMedCrossRefGoogle Scholar
  19. 19.
    Thompson HJ, Rivara FP, Jurkovich GJ et al (2008) Evaluation of the effect of intensity of care on mortality after traumatic brain injury. Crit Care Med 36: 282–290PubMedCrossRefGoogle Scholar
  20. 20.
    Narayan RK, Kishore PR, Becker DP et al (1982) Intracranial pressure: to monitor or not to monitor? A review of our experience with acute head injury. J Neurosurg 56: 650–659PubMedCrossRefGoogle Scholar
  21. 21.
    Marmarou A, Anderson RL, Ward JD et al (1991) Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg 75: S59–S66Google Scholar
  22. 22.
    Jones PA, Andrews PJ, Easton VJ et al (2003) Traumatic brain injury in childhood: intensive care time series data and outcome. Br J Neurosurg 17: 29–39PubMedGoogle Scholar
  23. 23.
    Citerio G, Andrews PJD (2004) Intracranial pressure. Part two: Clinical applications and technology. Intensive Care Med 30: 1882–1885PubMedCrossRefGoogle Scholar
  24. 24.
    Botteri M, Bandera E, Minelli C et al (2008) Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit Care Med 36: 3089–3092PubMedCrossRefGoogle Scholar
  25. 25.
    Czosnyka M, Smielewski P, Timofeev I et al (2007) Intracranial Pressure: more than a number. Neurosurg Focus 22 (5): E10PubMedCrossRefGoogle Scholar
  26. 26.
    Teasdale GM, Graham DI (1998) Craniocerebral trauma: Protection and retrieval of the neuronal population after injury. Neurosurgery 43: 723–737Google Scholar
  27. 27.
    Marino R, Gasparotti R, Pinelli L et al (2006) Post-traumatic cerebral infarction in patients with moderate or severe head trauma. Neurology 67: 1165–1171PubMedCrossRefGoogle Scholar
  28. 28.
    Menon DK (2003) Procrustes, the traumatic penumbra, and perfusion pressure targets in closed head injury. Anesthesiology 98: 805–807PubMedCrossRefGoogle Scholar
  29. 29.
    Coles JP (2004) Regional ischemia after head injury. Curr Opin Crit Care 10: 120–125PubMedCrossRefGoogle Scholar
  30. 30.
    Hlatky R, Valadka AB, Robertson CS (2005): Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation. Neurosurgery 57: 917–923PubMedCrossRefGoogle Scholar
  31. 31.
    Rangel-Castilla L, Gasco J, Nauta HJV et al (2008) Cerebral pressare autoregulation in traumatic brain injury. Neurosurg Focus 25 (4): E7PubMedCrossRefGoogle Scholar
  32. 32.
    Bouma GJ, Muizelaar JP, Stringer WA et al (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77: 360–368PubMedCrossRefGoogle Scholar
  33. 33.
    Robertson CS, Narayan RK, Gokaslan ZL et al (1989) Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg 70: 222–230PubMedCrossRefGoogle Scholar
  34. 34.
    Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans: a review of measurement methods. Physiol Meas 19: 305–338PubMedCrossRefGoogle Scholar
  35. 35.
    Latronico N, Beindorf AE, Rasulo FA et al (2000) Limits of intermittent jugular bulb oxygen saturation monitoring in the management of severe head trauma patients. Neurosurgery 46: 1131–1138PubMedCrossRefGoogle Scholar
  36. 36.
    Souter MJ, Andrews PJD (1996) A review of jugular venous oximetry. Intensive Care World 13: 32–35Google Scholar
  37. 37.
    Maloney-Wilensky E, Gracias V, Itkin A et al (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: A systematic review. Crit Care Med 37: 2057–2063PubMedCrossRefGoogle Scholar
  38. 38.
    Johnston AJ, Steiner LA, Coles JP et al (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33: 189–195PubMedCrossRefGoogle Scholar
  39. 39.
    Andrews PJD, Citerio G, Longhi L et al (2008) NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 34: 1362–1370PubMedCrossRefGoogle Scholar
  40. 40.
    Barelli A, Valente MR, Clemente A et al (1991) Serial multimodality-evoked potentials in severely head-injured patients: diagnostic and prognostic implications. Crit Care Med 19: 1374–1381PubMedCrossRefGoogle Scholar
  41. 41.
    Wang JT, Young GB, Connolly JF (2004) Prognostic value of evoked responses and event-related brain potentials in coma. Can J Neurol Sci 31: 438–450PubMedGoogle Scholar
  42. 42.
    Lew HL, Dikmen S, Slimp J et al (2003) Use of somatosensory-evoked potentials and cognitive event-related potentials in predicting outcomes of patients with severe traumatic brain injury. Am J Phys Med Rehabil 82: 53–64PubMedCrossRefGoogle Scholar
  43. 43.
    Carter BG, Butt W (2001) Review of the use of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med 29: 178–186PubMedCrossRefGoogle Scholar
  44. 44.
    Houlden DA, Taylor AB, Feinstein A et al (2010) Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med 38: 167–174PubMedCrossRefGoogle Scholar
  45. 45.
    Guerit JM, Amantini A, Amodio P et al (2009) Consensus on the use of neurophysiological tests in the intensive care unit ( ICU ): Electroencephalogram (EEG), evoked potentials (EP), and electroneuromyogrphy (ENMG). Neurophysiologie Clinique/Clinical Neurophysiology 39: 71–83CrossRefGoogle Scholar
  46. 46.
    Sawauchi S, Taya K, Murakami S et al (2005) Serum S-100B protein and neuron-specific enolase after traumatic brain injury [in Japanese]. No Shinkei Geka 33: 1073–1780PubMedGoogle Scholar
  47. 47.
    Naeimi ZS, Weinhofer A, Sarahrudi K et al (2006) Predictive value of S-100B protein and neuron specific-enolase as markers of traumatic brain damage in clinical use. Brain Inj 20: 463–468PubMedCrossRefGoogle Scholar
  48. 48.
    Nylen K, Ost M, Csajbok LZ et al (2008) Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir 150: 221–227CrossRefGoogle Scholar
  49. 49.
    Schultke E, Sadanand V, Kelly ME et al (2009) Can admission S-100| predict the extent of brain damage in head trauma patients? Can J Neurol Sci 36: 612–616PubMedGoogle Scholar
  50. 50.
    Beaudeux JL (2009) S100B protein: a novel biomarker for the diagnosis of head injury. Ann Pharm Fr 67: 187–194PubMedGoogle Scholar
  51. 51.
    Rainey T, Lesko M, Sacho R et al (2009) Predicting outcome after severe traumatic brain injury using the serum S100B biomarker: results using a single (24h) time-point. Resuscitation 80: 341–345PubMedCrossRefGoogle Scholar
  52. 52.
    Kovesdi E, Luckl J, Bukovics P et al (2010) Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and paediatrics. Acta Neurochir 152: 1–17CrossRefGoogle Scholar
  53. 53.
    Lannoo E, Van Rietvelde F, Colardyn F et al (2000) Early predictors of mortality and morbidity after severe closed head injury. J Neurotrauma 17: 403–414PubMedCrossRefGoogle Scholar
  54. 54.
    Van Beek JG, Mushkudiani NA, Steyerberg EW et al (2007) Prognostic value of admission laboratory parameters in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24: 315–328PubMedCrossRefGoogle Scholar
  55. 55.
    Saggar V, Mittal RS, Vyas MC (2009) Hemostatic abnormalities in patients with closed head injuries and their role in predicting early mortality. J Neurotrauma 26: 1665–1668PubMedCrossRefGoogle Scholar
  56. 56.
    Rovlias A, Kotsou S (2001) The blood leukocyte count and its prognostic significance in severe head injury. Surg Neurol 55: 190–196PubMedCrossRefGoogle Scholar
  57. 57.
    Bilotta F, Caramia R, Paoloni FP et al (2009) Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology 110: 611–619PubMedCrossRefGoogle Scholar
  58. 58.
    Vespa PM (2008) Intensive glycemic control in traumatic brain injury: what is the ideal glucose range? Crit Care 12: 175PubMedCrossRefGoogle Scholar
  59. 59.
    Vespa PM (2006) The implications of cerebral ischemia and metabolic dysfunction for treatment strategies in neurointensive care. Curr Opin Crit Care 12: 119–123PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • M. Zanello
  • M. Vincenzi
  • M. Bandini

There are no affiliations available

Personalised recommendations